Listes (2)

Exercice 1 Termes d'une suite

Q1 On considère la suite (u_n) définie par $u_1 = 5$ et : $\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{1 + u_n^3}{1 + u_n^2}$.

Écrire une fonction suite prenant en argument $n \in \mathbb{N}^*$ et renvoyant la liste $[u_1, u_2, \ldots, u_n]$. On commencera par initialiser une liste L à la liste vide puis on calculera successivement les termes de la suite (u_n) et on les ajoutera dans L. On vérifiera que les premiers termes de la suite sont : 5 ; 4.846 ; 4.689 ; 4.528.

Q2 On considère ensuite la suite (a_n) définie par $a_0 = 1$ et $\forall n \in \mathbb{N}, \ a_{n+1} = (n+1) \times a_n$.

Écrire une fonction prenant en argument $n \in \mathbb{N}$ et renvoyant la liste $[a_0, a_1, \dots, a_n]$. Quelle est la valeur de a_n pour $n \in \mathbb{N}$?

Q3 On considère maintenant la suite (v_n) définie par : $\forall n \in \mathbb{N}^*, \ v_n = \sum_{k=1}^n \frac{1}{k^2}$.

Écrire une fonction prenant en argument $n \in \mathbb{N}$ et renvoyant $[v_1, v_2, \dots, v_n]$.

On donne $v_1=1,\ v_2=1,25,\ v_3\simeq 1,36,\ v_4\simeq 1,42.$ Quelle conjecture pouvez-vous faire quant au comportement de v_n lorsque $n\to +\infty$? On pourra calculer $\sqrt{6v_N}$ pour N grand.

Exercice 2 Proche du cours

Q1 Écrire une fonction prenant en argument une liste $L = [x_0, x_1, x_2, \dots, x_{n-1}]$ et renvoyant $\sum_{k=0}^{n-1} \frac{x_k}{1+k}$.

Testez votre fonction avec la liste L = [3, 2, 6, 8], on vérifiera que la somme demandée vaut 8.

Q2 Écrire une fonction prenant en argument une liste contenant les nombres $x_1, x_2, ..., x_n$ et renvoyant la valeur de $\sum_{k=1}^{n} k x_k$. Testez votre fonction avec la liste L = [1, 3, 5, 7, ..., 101], on vérifiera que la somme demandée vaut alors 89 726.

Q3 Écrire une fonction prenant en argument une liste $L = [x_0, x_1, x_2, \dots, x_{n-1}]$ et renvoyant la liste $[x_0^2 + 0^2, x_1^2 + 1^2, x_2^2 + 2^2, \dots, x_{n-1}^2]$. Testez votre fonction avec une liste de votre choix.

Q4 Écrire une fonction prenant en argument une liste $L = [x_1, x_1, x_2, \dots, x_n]$ et renvoyant la liste $[x_1 + x_2, x_2 + x_3, x_3 + x_4, \dots, x_{n-1} + x_n]$. Testez votre fonction avec une liste de votre choix.

Exercice 3

Q5 Écrire une fonction appartient prenant en argument une liste L et une variable a et renvoyant True si a est un élément de L et False sinon. On n'utilisera pas la commande in. Par exemple si L = [2,5,3,-1,0] alors appartient (L,3) doit renvoyer True.

Q1 En utilisant la fonction précédente, écrire une fonction prenant en arguments deux listes L et M et renvoyant True si tous les éléments de L sont dans M et False sinon. Par exemple, si L = [1,4,5] et M = [2,1,7,5,9,4] alors inclus (L,M) doit renvoyer True.

Q2 On suppose que L et M sont deux listes sans doublon, c'est-à-dire que tous les éléments de L sont distincts, et de même pour M. Écrire une fonction memes_elem prenant en arguments L et M et renvoyant True si L et M contiennent exactement les mêmes éléments (éventuellement dans un ordre différent) et False sinon. Par exemple si L = [3,7,1,2] et M = [2,1,7,3] alors memes_elem (L,M) doit renvoyer True.