
BCPST 1B Tableaux 2025-2026

Feuille de cours 7 (informatique) : Tableaux

La bibliothèque numpy de Python permet de manipuler des tableaux multidimensionnels. On se
limitera à des tableaux à double entrée, correspondant mathématiquement aux matrices. Pour utiliser
la bibliothèque numpy on commencera par l’importer via la commande :

1 import numpy as np

1 Premiers tableaux et opérations élémentaires
Les tableaux Python sont une structure de données permettant de stocker des variables de même
type. Contrairement aux listes, tous les éléments d’un tableau doivent donc être du même type, on
considèrera par exemple des tableaux de :

Pour définir une variable A contenant le tableau bidimensionnel suivant à n lignes et p colonnes

A =

x11 x12 . . . x1p

x21 x22 . . . x2p

...
xn1 xn2 . . . xnp

il faut utiliser la syntaxe suivante :

1 A = np.array([[x11, ... ,x1p],[x21, ... ,x2p], ... ,[xn1, ... ,xnp]])

Exemples : Créer les tableaux A et B correspondant aux matrices suivantes :

• A =
(

1 4 3
2 0 6

)

• B =

 5 2
1 3

−1 2


Remarques :

• Attention aux doubles crochets [[...],[...],...,[...]]. En Python, un tableau se
présente en fait sous la forme d’une liste de listes. Toutefois, utiliser la bibliothèque numpy
va nous offrir plus d’options que d’utiliser de simples listes de listes.

• Notez que dans cette syntaxe, on donne les coefficients d’un tableau ligne par ligne (et non
colonne par colonne).

1

BCPST 1B Tableaux 2025-2026

1.1 Tableaux de base
Il existe des commandes (à connaître) permettant de construire des tableaux simples rapidement :

• np.eye(n) renvoie la matrice identité de taille n.
Par exemple : np.eye(4) vaut

• np.zeros((n,p)) renvoie la matrice de taille n × p ne contenant que des 0.
Par exemple : np.zeros((2,3)) renvoie

• np.ones((n,p)) renvoie la matrice de taille n × p ne contenant que des 1.
Par exemple : np.ones((3,2)) renvoie

• np.diag(L) où L est une liste de longueur n renvoie la matrice diagonale de taille n × n
dont les coefficients diagonaux sont ceux de L.
Par exemple, np.diag([3,6,1,2]) renvoie

Remarque : Attention aux s et aux doubles parenthèses pour les fonctions np.zeros et np.ones.

1.2 Opérations
Les opérations de base +,-,*,/ sur des tableaux sont réalisées coefficients par coefficients. Par
exemple, si
A = np.array([[3,1,0],[2,1,5]]) et B = np.array([[4,1,1],[0,2,1]])
alors :

• 2*A contient

• A+B contient

• A*B contient

Remarques :
• Pour que ces opérations aient un sens, il faut que les tableaux A et B soient de même taille.

Si ce n’est pas le cas alors Python affiche le message d’erreur suivant :
ValueError: operands could not be broadcast together with shapes (a,b) (c,d)

• Attention, la syntaxe A*B n’effectue donc pas le produit matriciel de A et B (pour réaliser
ce produit, voir paragraphe 3.1).

• On peut aussi appliquer une fonction de la bibliothèque numpy à un tableau. Là encore la
fonction s’applique alors coefficient par coefficient. Par exemple pour la matrice A ci-dessus,
np.exp(A) renverra

Exercice 1
En utilisant les commandes précédentes, créer rapidement la matrice A =

2 1 1
1 2 1
1 1 2

.

2

BCPST 1B Tableaux 2025-2026

2 Numérotation et parcours
Pour récupérer le nombre de lignes et le nombre de colonnes d’un tableau A, on utilise les commandes
suivantes :

1 np.size(A,0) # (0 pour les lignes)
2 np.size(A,1) # (1 pour les colonnes)

Remarque : Attention à ne pas oublier le deuxième argument 0 ou 1. Si cet argument n’est pas
précisé, c’est-à-dire si on demande np.size(A), alors Python renvoie le nombre total d’éléments
de A c’est-à-dire le produit np si A a n lignes et p colonnes.

2.1 Accès aux coefficients
Si A est un tableau à n lignes et p colonnes alors ses coefficients sont numérotés

A[i,j] avec i ∈ et j ∈

Comme en mathématiques, le premier indice correspond au numéro de la ligne et le deuxième au
numéro de la colonne.

Attention ! ! ! En mathématiques, pour une matrice A ∈ Mn,p(K) on utilise la notation Ai,j avec
i ∈ [[1, n]] et j ∈ [[1, p]], en Python la numérotation commence à 0, comme pour les listes !

Par exemple, si A =

10 3 5 0
2 6 −1 −8
4 9 −2 7

 alors :

• A[2,1] renvoie
• A[1,3] renvoie
• le coefficient 5 de A s’obtient par
• le coefficient 7 de A s’obtient par
• A[2,4] renvoie

Comme les listes, les tableaux sont des objets mutables : on peut modifier un coefficient du tableau
placé en position (i, j). Il suffit pour cela d’écrire :

1 A[i,j] = nouvelle_valeur

Exercice 2
Que contient A après exécution du script suivant ?

1 A = np.array([[0,1,4],[2,1,5]])
2 A[0,1] = 7
3 A[1,1] = 9

Remarque : les commandes A[i,:] et A[:,j] permettent respectivement d’accéder aux listes cor-
respondant à la i-ème ligne de A et à la j-ème colonne de A. On peut donc aussi modifier directement
une ligne ou une colonne en entier.

3

BCPST 1B Tableaux 2025-2026

2.2 Création par parcours à partir de la matrice nulle
Lorsqu’on veut créer une matrice qui ne s’obtient pas directement via les fonctions élémentaires
décrites dans le paragraphe 1.1, la stratégie usuelle consiste à :

1. créer une matrice nulle A de la bonne taille n × p, puis
2. à parcourir ses lignes et ses colonnes pour la remplir en modifiant les 0 qu’elle contient pour

les remplacer par le coefficient souhaité.
En pratique on utilisera donc la syntaxe suivante :

1.
2.

Exercice 3
Créer les matrices A et B définies par les expressions ci-dessous :

1. A ∈ Mn(R) telle que pour tous i, j ∈ [[0, n − 1]], A[i,j] = i + j.
2. B ∈ Mn,p(R) telle que pour tous i, j ∈ [[0, n − 1]] × [[0, p − 1]], B[i,j] = ij.

4

BCPST 1B Tableaux 2025-2026

3 Exercices classiques et entraînement

3.1 Exercices classiques (questions de cours)
Exercice 4
Écrire une fonction produit_mat prenant en arguments deux matrices A et B et renvoyant leur
produit matriciel. Votre fonction devra renvoyer un message d’erreur dans le cas où le produit ma-
triciel n’est pas possible.
Remarque : bien sûr, cette fonction existe déjà en Python : on obtient le produit matriciel de A et
B par la commande np.dot(A,B) (mais on s’interdit de l’utiliser ici).

Exercice 5
Écrire une fonction transposer prenant en argument une matrice A et renvoyant sa transposée.
Remarque : bien sûr, cette fonction existe déjà en Python : on obtient la transposée de A par la
commande np.transpose(A) (mais on s’interdit de l’utiliser ici).

5

BCPST 1B Tableaux 2025-2026

3.2 Entraînement
Exercice 6
Écrire une fonction somme prenant en argument une matrice A et renvoyant la somme de tous ses

coefficients. Par exemple, si A =
(

4 1 2
3 0 1

)
alors somme(A) doit renvoyer 4 + 1 + 2 + 3 + 0 + 1 = 11.

Exercice 7
Écrire une fonction recherche prenant en argument une matrice A et un nombre x et renvoyant
True si x apparaît dans la matrice A et False sinon.

Exercice 8
Écrire une fonction cree prenant en argument un entier n et renvoyant la matrice An ∈ Mn(R) don-

née par An =



1 n n n . . . n
n 2 n n . . . n
n n 3 n . . . n
... . . . n
n . . . n n − 1 n
n . . . n n


. Par exemple, cree(4) doit renvoyer A4 =


1 4 4 4
4 2 4 4
4 4 3 4
4 4 4 4

.

On proposera deux versions de la fonction, l’une utilisant les opérations et fonctions élémentaires du
paragraphe 1.1 ; l’autre réalisant la matrice An par un parcours à partir de la matrice initialement
remplie de n.

6

	Premiers tableaux et opérations élémentaires
	Tableaux de base
	Opérations

	Numérotation et parcours
	Accès aux coefficients
	Création par parcours à partir de la matrice nulle

	Exercices classiques et entraînement
	Exercices classiques (questions de cours)
	Entraînement

