
BCPST 1B Feuille de cours 8 (informatique) : tris 2025-2026

Feuille de cours 8 (informatique) :
tris

Ce cours présente deux algorithmes de tris, i.e. deux méthodes permettant de ranger dans
l’ordre croissant une liste de nombres réels. On peut bien sûr adapter ces algorithmes pour
ranger la liste dans l’ordre décroissant (à faire en exercice et à vérifier sur l’ordinateur !).

On présente uniquement des versions “en place” des algorithmes. Cela signifie qu’on va tra-
vailler directement dans la liste prise en argument : on modifiera cette liste pour la trier et la
renvoyer. Pour cela, on aura besoin de faire des échanges dans la liste.

Rappel : Comment faire pour échanger les éléments d’indices p et q d’une liste L ?

1 Tri par sélection
Rappel : écrire une fonction ind_min renvoyant l’indice du plus petit élément d’une liste de
nombres.

L’algorithme du tri par sélection propose de trier une liste L en sélectionnant successivement
ses plus petits éléments pour les placer au début. Il consiste à :

• trouver le minimum de la liste L
• l’échanger avec le premier élément de L c’est-à-dire avec L[0]
• trouver ensuite le deuxième plus petit élément de L : c’est en fait le minimum de la

sous-liste de L ne contenant que les éléments d’indices supérieurs à 1
• l’échanger avec le deuxième élément de L c’est-à-dire avec L[1]
• continuer jusqu’à avoir traité tous les éléments de L !

1

BCPST 1B Feuille de cours 8 (informatique) : tris 2025-2026

Commençons par un exemple. Que contient successivement la liste L à chaque étape de cet
algorithme pour L = [6, 3, 1, 5, 4, 8, 7, 2] ?

Écrivons maintenant une fonction tri_select prenant en argument une liste de nombres L
et la triant de sorte qu’à la fin de l’exécution de tri_select(L), L contienne la liste triée.

Si la liste L comporte n éléments, combien d’opérations “élémentaires” (i.e. ici de comparaisons
entre deux éléments de la liste) doit-on faire en tout pour obtenir la liste triée ?

2

BCPST 1B Feuille de cours 8 (informatique) : tris 2025-2026

2 Tri par insertion
Le principe du tri par insertion est de trier progressivement une liste en commençant par les
éléments apparaissant en premier dans la liste (et non pas en commençant par les plus petits
comme dans le tri par sélection).

Au fur et à mesure de l’algorithme, on insère tour à tour les éléments de la liste à leur place
parmi les éléments les plus à gauche de la liste, qui sont eux déjà triés. C’est souvent de cette
manière que l’on trie sa main de cartes.

Commençons par un exemple en décrivant ce que contient successivement la liste L lors de son
tri par insertion si initialement L = [6, 5, 3, 1, 8, 7, 2, 4].

Décrivons maintenant l’algorithme en Français :
• Première étape

La sous-liste constituée du premier élément de L est triée (elle ne contient qu’un élément).
On considère alors L[1] et on le met à sa place dans la sous-liste triée. Pour cela, on
compare L[0] et L[1].
— Si L[0] > L[1], on permute L[0] et L[1].
— Sinon, on les laisse à leur place.
Au terme de la première étape, la sous-liste [L[0], L[1]] constituée des deux premiers
éléments de L est triée.

• Deuxième étape
On considère le premier élément de la partie non triée de la liste L, c’est-à-dire L[2]. On
le met à sa place dans la sous-liste triée (qui est pour l’instant [L[0], L[1]]).
Pour cela, on parcourt la sous-liste triée jusqu’à arriver à un élément plus petit que L[2]
et on insère l’élément L[2] à cet endroit :
— Si L[2] > L[1], alors on laissse L[2] en troisième position.
— Si L[1] > L[2] > L[0] alors on met L[2] en deuxième position.
— Si L[1] > L[0] > L[2] alors on met L[2] en première position.
Au terme de la deuxième étape, la liste [L[0], L[1], L[2]] des trois premiers éléments de
L est triée.

• On itère n fois (avec n le nombre d’éléments dans la liste) afin de trier la totalité de la
liste. À la fin de l’étape numéro k, les k premiers éléments de la liste sont dans l’ordre
croissant. Lors de la k-ème étape, pour insérer l’élément L[k] à la bonne place, il suffit –
puisque les k − 1 premiers éléments de la liste sont déjà placés par ordre croissant – de
trouver le plus petit indice j tel que L[j] > L[k] > L[j − 1]. On décale alors les éléments
L[j], L[j + 1], . . . , L[k − 1] vers la droite et on place L[k] à la place de L[j].

3

BCPST 1B Feuille de cours 8 (informatique) : tris 2025-2026

Pour l’implémentation, notons n la longueur de la liste L. La k-ème étape de l’algorithme vise
à placer l’élément x = L[k] à la bonne place. On commence à k = 1 puisque la sous-liste ne
contenant que L[0] est triée. Ainsi on utilise la boucle for suivante :

Pour trouver le bon emplacement j pour x, on commence par supposer que x est déjà à la
bonne place, c’est-à-dire que j =
On fait ensuite décroître j (c’est-à-dire) jusqu’à ce que l’élément à sa gauche (c’est-
à-dire L[]) soit plus petit que x. Il faut donc faire décroitre j tant que
Enfin, il faut également s’assurer de ne pas sortir de la liste, i.e. que

En effectuant la recherche du bon emplacement j, on décale les éléments rencontrés qui doivent
se placer in fine à droite de x donc on effectue l’affectation :
Enfin, une fois le bon emplacement j trouvé, on peut y placer l’élément x, donc on effectue
l’affectation

Finalement, le code Python est le suivant :

Si la liste L comporte n éléments, combien d’opérations “élémentaires” (i.e. ici de comparaisons
entre deux éléments de la liste) doit-on faire en tout pour obtenir la liste triée ?

4

BCPST 1B Feuille de cours 8 (informatique) : tris 2025-2026

3 Exercices
Exercice 1

1. Écrire une fonction ind_max renvoyant l’indice du maximum d’une liste de nombres.
2. Utiliser cette fonction pour écrire une fonction tri_select_2 réalisant le tri d’une liste

de nombres L, toujours dans l’ordre croissant, mais de la manière suivante :
— sélectionner le plus grand élément de L et l’échanger avec le dernier élément de L,
— sélectionner le deuxième plus grand élément de L et l’échanger avec l’avant-dernier

élément de L,
— etc.
On commencera par décrire ce que doit contenir successivement la liste L lors de l’exécu-
tion de l’algorithme si initialement L vaut [5,1,15,2,10,8,3]. De plus, afin d’utiliser
la fonction de la question 1, on pensera à utiliser des sous-listes.

Exercice 2
Écrire une fonction tri_insert_2 réalisant le tri dans l’ordre décroissant d’une liste de
nombres L en suivant une méthode similaire à celle du tri par insertion.

5

	Tri par sélection
	Tri par insertion
	Exercices

