Programme de colles Semaine 4 du 7/10 au 11/10/2024

Chapitre 3 : Trigonométrie

- Définition géométrique pour $t \in \mathbf{R}$ de $\cos(t), \sin(t)$. Définition géométrique de $\tan(t)$ pour $t \in \mathcal{D}_{\tan} = \mathbf{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbf{Z} \right\}$. Propriété : $\tan = \frac{\sin}{\cos t}$
- Éléments de symétrie : parité, périodicité, angles associés : $t + \pi, \pi t, t + \frac{\pi}{2}, \frac{\pi}{2} t$.
- Encadrement pour sin et cos, identité $\cos^2 + \sin^2 = 1$, valeurs remarquables.
- Variations et courbes représentatives de sin, cos, tan.
- Formulaire de trigonométrie : addition, duplication, linéarisation.
- Dérivées de sin, cos, tan; application aux composées $\sin(u)$, $\cos(u)$, $\tan(u)$.
- Équations et inéquations trigonométriques.

Remarque 1 : les notions et notations Arccos, Arcsin et Arctan n'ont pas été abordées.

 $Remarque\ 2$: ne pas hésiter à faire un schéma pour toute question de symétrie ou pour toute résolution d'équation ou inéquation trigonométrique.

Chapitre 4: Logique, ensembles

- Assertions, valeur de vérité, table de vérité.
- Opérations sur les assertions : négation, et (\land) , ou (\lor) , implication (\Rightarrow) , équivalence (\Leftrightarrow) .
- Quantificateurs : universel, existentiel, d'unicité.
- Cardinal d'un ensemble fini.
- Parties (sous-ensembles) d'un ensemble, ensemble $\mathcal{P}(E)$ des parties de E.
- Opérations sur les sous-ensembles : complémentaire, intersection, union, inclusion, égalité.
- Produit cartésien d'ensembles.
- Raisonnements par : disjonction de cas, contraposée, l'absurde, récurrence, analyse-synthèse.

Remarque : les notions de ce chapitre sont transversales et doivent progressivement être maîtrisées par les étudiants. On ne proposera pas d'exercice ayant ce chapitre pour unique thème.

Liste des questions de cours :

- 1. Simplifier: $\sin(t+\pi)$, $\cos(\pi-t)$, $\tan\left(t+\frac{\pi}{2}\right)$, $\sin\left(\frac{\pi}{2}-t\right)$.
- 2. Que valent : $\sin\left(\frac{\pi}{3}\right)$, $\cos\left(\frac{2\pi}{3}\right)$, $\tan\left(-\frac{3\pi}{4}\right)$? L'examinateur pourra choisir d'autres valeurs!
- 3. Soient $\omega > 0$ et $\varphi \in \mathbf{R}$. Que dire de la périodicité de $t \longmapsto \cos(\omega t + \varphi)$? **Démontrer le résultat.**
- 4. Dérivées de sin, cos, tan. Pour u dérivable, dérivées de $\sin(u)$, $\cos(u)$. Si de plus u prend ses valeurs dans \mathcal{D}_{\tan} , dérivée de $\tan(u)$.
- 5. Formules d'addition pour cos et sin : $\cos(a+b)$, $\cos(a-b)$, $\sin(a+b)$, $\sin(a-b)$.
- 6. Formules de duplication pour cos et sin : cos(2a) (les 3 formes), sin(2a).
- 7. Formules de linéarisation pour $\cos^2(a)$, $\sin^2(a)$ et $\sin(a)\cos(a)$.
- 8. Exercice-type : Résoudre dans R l'inéquation $\cos(2t) > \frac{\sqrt{3}}{2}$.
- 9. **Exercice-type** : Écrire en français : $\forall x \in \mathbf{R}, \ \exists y \in \mathbf{R}, \ x+y>0$. Écrire en langage symbolique le contraire de cette assertion.
- L'examinateur pourra choisir une autre assertion. 10. **Exercice-type** : Démontrer par récurrence que : $\forall n \geqslant 1, \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Informatique (en langage Python):

- 1. Déclaration d'une variable : affectation (=).
- 2. Importations à partir du module numpy.
- 3. Syntaxe de définition d'une fonction. Mots clés : def, return.
- 4. Booléens True, False.
- 5. Tests (==, !=, >, >=, <, <=).
- 6. Instructions conditionnelles (if, elif, else).
- 7. Boucles for ou while. Utilisation de la fonction range.

 Applications : calculs de sommes ou de produits, calcul du terme général d'une suite récurrente.

Bon courage à tous!