DS n°2, mathématique

Durée : 3 heures

Il sera tenu compte dans l'appréciation des copies de la qualité de la rédaction et de la présentation.

L'usage des calculatrices est interdit. Le sujet comporte 1 page recto/verso.

Un temps conseillé est donné à titre indicatif.

Exercice 1 : Résolution d'une inéquation (45 minutes)

On considère l'inéquation (E): $\frac{\cos^2(x)}{\sin(x)} \ge \frac{3}{2}$, d'inconnue $x \in \mathbf{R}$.

- 1. Donner l'ensemble de définition \mathcal{D} de l'inéquation (E).
- 2. Montrer que : $(E) \Leftrightarrow \frac{-2\sin^2(x) 3\sin(x) + 2}{\sin(x)} \ge 0$.
- 3. Soit t un réel. Factoriser l'expression : $P(t) = -2t^2 3t + 2$.
- 4. Résoudre l'inéquation (E) sur \mathcal{D} .

Exercice 2 : Une loi des tangentes (45 minutes)

On considère un triangle plan, non rectangle, dont les trois angles sont nommés a,b,c.

Les nombres a,b,c appartiennent donc à l'ensemble $]0,\pi[\smallsetminus\{\frac{\pi}{2}\}]$, et on rappelle que la somme des angles d'un triangle plan vaut π :

$$a+b+c=\pi$$

Le but de cet exercice est de démontrer la relation :

$$\tan(a) + \tan(b) + \tan(c) = \tan(a) \cdot \tan(b) \cdot \tan(c)$$

1. Pour tout $t \in \mathbf{R}$, exprimer $\sin(\pi - t)$ puis $\cos(\pi - t)$ en fonction de $\sin(t)$ ou $\cos(t)$. En déduire une expression de $\tan(\pi - t)$ en fonction de $\sin(t)$ et $\cos(t)$, valable pour tout $t \in \mathcal{D}_{\tan}$.

Dans toute la suite de l'exercice, on pose : $T = \tan(a) + \tan(b) + \tan(c)$.

- 2. Rappeler les formules d'addition du sinus et du cosinus.
- 3. Montrer que : $tan(a) + tan(b) = \frac{sin(a+b)}{cos(a)cos(b)}$
- 4. Déduire des questions précédentes que : $T = \frac{\sin(a+b)}{\cos(a)\cos(b)} \frac{\sin(a+b)}{\cos(a+b)}$
- 5. Montrer que : $\frac{1}{\cos(a)\cos(b)} \frac{1}{\cos(a+b)} = -\frac{\tan(a)\tan(b)}{\cos(a+b)}$
- 6. En déduire que : $T = \tan(a) \cdot \tan(b) \cdot \tan(c)$

Problème : Étude d'une fonction (1 heure 30 minutes)

On définit la fonction f par son expression : $f(x) = \cos(x) - \sin^2(x)$. On note Γ la courbe représentative de f dans un repère du plan.

1. Propriétés générales

- (a) Déterminer l'ensemble de définition de f.
- (b) Calculer les images par f des réels : 0, $\frac{\pi}{3}$, $\frac{2\pi}{3}$ et π .
- (c) Montrer que la fonction f est 2π -périodique.
- (d) Étudier la parité de f.
- (e) En déduire qu'il suffit d'étudier f sur l'intervalle $I = [0, \pi]$. Préciser quelles transformations géométriques permettent ensuite d'obtenir la courbe Γ .

2. Variations

- (a) Sur quel ensemble la fonction f est-elle dérivable? Déterminer une expression de la dérivée f' de la fonction f.
- (b) Résoudre sur $I = [0, \pi]$ l'inéquation : $1 + 2\cos(x) \ge 0$.
- (c) En déduire le signe de f'(x) pour $x \in I$.
- (d) Dresser le tableau de variations de f sur l'intervalle I, en précisant tous les points où sa dérivée s'annule.

3. Racine de f

Le tableau de variations de f montre que f s'annule une unique fois sur l'intervalle I.

On se propose de déterminer l'unique solution sur I de l'équation : f(x) = 0.

On pose, pour
$$x \in [0, \pi[, t = \tan(\frac{x}{2})]$$
.

- (a) Rappeler les trois formules de duplication du cosinus.
- (b) Montrer que : $\frac{1-t^2}{1+t^2} = \cos(x)$.
- (c) On peut démontrer de même que : $\frac{2t}{1+t^2} = \sin(x)$.

Montrer que : $\forall x \in [0, \pi[, f(x) = 0 \Leftrightarrow t^4 + 4t^2 - 1 = 0.$

- (d) Résoudre dans ${\bf R}$ l'équation : $X^4+4X^2-1=0$. On donne : $\sqrt{5}\approx 2,23$ et on rappelle que $\sqrt{20}=2\sqrt{5}$.
- (e) Pour $x \in [0, \pi[$, préciser le signe de t et en déduire que $t = \sqrt{-2 + \sqrt{5}}$.
- (f) On note α l'unique réel de $\left[0, \frac{\pi}{2}\right[$ tel que : $\tan(\alpha) = \sqrt{-2 + \sqrt{5}}$. Exprimer en fonction de α l'unique solution $x_0 \in I$ de l'équation f(x) = 0.

4. Représentation graphique

On se place dans un repère orthogonal $(O, \overrightarrow{i}, \overrightarrow{j})$ du plan, d'unités graphiques :

- 6 cm (ou 6 grands carreaux) pour π unités horizontalement;
- 4 cm (ou 4 grands carreaux) pour 1 unité verticalement.

On se propose de tracer l'allure de la courbe Γ sur une feuille au format 'paysage'.

- (a) Sur l'intervalle $[-2\pi, 2\pi]$, tracer toutes les tangentes horizontales à la courbe Γ .
- (b) En déduire l'allure précise de Γ sur l'intervalle $[-2\pi, 2\pi]$. On donne $x_0 \approx 0, 9$ soit 1, 7 cm (ou grands carreaux) horizontalement.

FIN DU SUJET