DS n°3, mathématique

Durée : 3 heures

Il sera tenu compte dans l'appréciation des copies de la qualité de la rédaction et de la présentation. L'usage des calculatrices est interdit.

Le sujet comporte 2 pages, numérotées de 1 à 2.

Exercice 1 : Calcul d'une somme

Pour tout entier $n \ge 1$, on pose : $S_n = \sum_{k=1}^n (-1)^k k^2$.

- 1. Calculer les valeurs de S_1 , S_2 et S_3 .
- 2. Définir en langage Python une fonction SOMME prenant pour argument un entier $n \ge 1$ et renvoyant la valeur de S_n .
- 3. On cherche à prouver qu'il existe un polynôme P de degré inférieur ou égal à 2, tel que :

(1)
$$\forall n \ge 1, S_n = (-1)^n P(n)$$

On pose alors : $P(n) = an^2 + bn + c$, où a, b, c sont des coefficients réels fixés.

(a) En examinant les valeurs de S_1, S_2 et S_3 , montrer que la relation (1) implique :

(S)
$$\begin{cases} a+b+c=1\\ 4a+2b+c=3\\ 9a+3b+c=6 \end{cases}$$

- (b) Résoudre le système (S) et en déduire la seule expression possible pour le polynôme P.
- (c) Pour ce polynôme P, démontrer par récurrence la relation (1).

Exercice 2 : Des valeurs particulières du cosinus

Le but de l'exercice est de calculer les valeurs exactes de : $\alpha = \cos\left(\frac{2\pi}{5}\right)$ et $\beta = \cos\left(\frac{4\pi}{5}\right)$.

On définit le nombre complexe ω par sa forme exponentielle : $\omega = e^{\frac{2i\pi}{5}}$.

- 1. Montrer que : $\sum_{k=0}^{4} \omega^k = 0.$
- 2. (a) Expliquer pour quoi : $\cos\left(\frac{6\pi}{5}\right) = \beta$ et $\cos\left(\frac{8\pi}{5}\right) = \alpha$.
 - (b) En déduire que : $\alpha + \beta = -\frac{1}{2}$.

On pourra s'intéresser à la partie réelle de la somme précédente.

- 3. Soient $x, y \in \mathbf{R}$. On pose : $z = \frac{1}{2} \left(e^{i(x+y)} + e^{i(x-y)} \right)$.
 - (a) Montrer que : $z = e^{ix} \cos(y)$.
 - (b) En déduire l'expresion de $\cos(x)\cos(y)$ en fonction de $\cos(x+y)$ et $\cos(x-y)$.
- 4. Montrer que : $\alpha \times \beta = -\frac{1}{4}$.
- 5. En déduire les valeurs exactes de α et β .

Exercice 3 : Une somme de Newton

Soit n un entier tel que $n \ge 2$. On pose : $S_n = \sum_{k=0}^{n-1} (n-k)(-1)^k \binom{n}{k}$.

- 1. Soit $k \le n-1$. Exprimer en fonction de k et n la somme : $\sum_{k=0}^{n-1} (-1)^k \binom{n}{k}$.
- 2. En déduire que : $\forall n \ge 2$, $S_n = \sum_{n=0}^{n-1} \sum_{k=0}^{p} (-1)^k \binom{n}{k}$.
- 3. Pour $1 \le k \le n-1$, exprimer $\binom{n-1}{k-1} + \binom{n-1}{k}$ à l'aide d'un unique coefficient binomial.
- 4. En déduire que : $\sum_{k=0}^{p} (-1)^k \binom{n}{k} = \sum_{k=1}^{p} (-1)^k \binom{n-1}{k-1} + \sum_{k=0}^{p} (-1)^k \binom{n-1}{k}.$
- 5. À l'aide d'un glissement d'indices, montrer que : $\sum_{k=0}^{p} (-1)^k \binom{n}{k} = (-1)^p \binom{n-1}{p}.$
- 6. En déduire, pour tout $n \ge 2$, la valeur de S_n .

Exercice 4 : Étude d'une fonction de la variable complexe

On pose : $f(z) = \frac{z}{1+z^2}$, où z désigne une variable complexe.

- 1. Déterminer l'ensemble de définition \mathcal{D} de f.
 - 2. Résoudre dans \mathcal{D} l'équation $f(z) = \frac{1}{\sqrt{3}}$. Préciser les formes exponentielles des solutions.
 - 3. Montrer que : $\forall z, z' \in \mathcal{D}$, $f(z) = f(z') \Leftrightarrow z = z'$ ou zz' = 1.
- 4. Expliquer pourquoi : $\forall z \in \mathcal{D}, \overline{f(z)} = f(\overline{z}).$
- 5. En déduire l'ensemble des complexes z tels que : $f(z) \in \mathbf{R}$.
- 6. Soit $z \in \mathcal{D}$ de module 1. On pose : $z = e^{i\theta}$.
 - (a) Exprimer f(z) en fonction de $\cos(\theta)$.

 Indication: on pourra utiliser la technique de l'arc médian.
 - (b) Déterminer l'ensemble des arguments $\theta \in]-\pi,\pi]$ tels que $\sum_{k=0}^{n} (f(z))^k$ converge lorsque $n \to +\infty$.

2