I Définitions

- 1. Fonction
- 2. Application
- 3. Exemples
- 4. Images directes, images réciproques

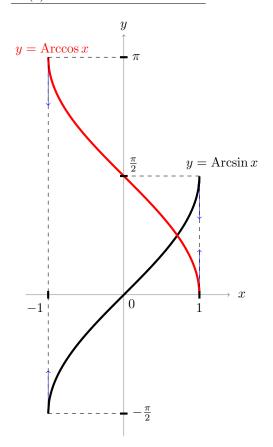
II Composée

- 1. Définition
- 2. Exemples
- 3. Élément neutre

III Restriction, prolongement

- 1. Définition
- 2. Exemples

IV Injection, surjection, bijection


- 1. Définitions
- 2. Exemples
- 3. Composées d'injections ou de surjections
- 4. Applications bijectives
- 5. Bijections réciproques
- 6. Composées de bijections
- 7. Exemples usuels
- 8. Fonctions Arcsinus, Arccosinus, Arctangente ($\rightarrow Annexe$)

V Fonctions de R dans R

- 1. Représentations graphiques
- 2. Graphes des fonctions associées
 - $x \longmapsto f(x) + a$
 - $x \longmapsto f(x+a)$
 - $\bullet x \longmapsto f(a-x)$
 - $x \longmapsto af(x)$
 - $x \longmapsto f(ax)$
- 3. Graphes des bijections réciproques

Annexes

4.8(a) Fonctions Arcsin et Arccos:

Valeurs remarquables:

x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Arcsin(x)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
Arccos(x)	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

Arcsin est impaire:

 $\forall x \in [-1, 1], \operatorname{Arcsin}(-x) = -\operatorname{Arcsin}(x)$

Relation entre Arcsin et Arccos

 $\forall x \in [-1, 1], \ \operatorname{Arcsin}(x) + \operatorname{Arccos}(x) = \frac{\pi}{2}$

Équation trigonométrique

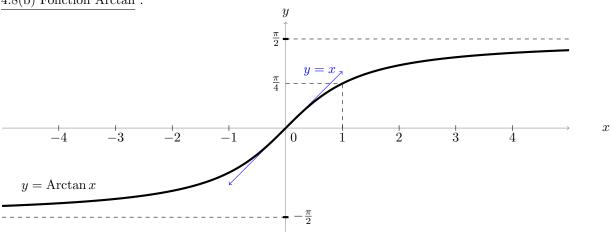
Soit $a \in [-1, 1]$, alors à 2π près :

$$\sin(\theta) = a \Leftrightarrow \theta = \operatorname{Arcsin}(a) \text{ ou } \pi - \operatorname{Arcsin}(a)$$

 $cos(\theta) = a \Leftrightarrow \theta = Arccos(a) \text{ ou } -Arccos(a)$

La fonction Arctangente

- \bullet est définie et dérivable sur ${\bf R}$
- est impaire : $\forall x \in \mathbf{R}$, $\operatorname{Arctan}(-x) = -\operatorname{Arctan}(x)$
- $\forall x \in \mathbf{R}, \operatorname{Arctan}'(x) = \frac{1}{1+x^2}$
- \bullet est strictement croissante sur ${\bf R}$
- a pour limites : $\lim_{x \to +\infty} \operatorname{Arctan}(x) = \frac{\pi}{2}$ $\lim_{x \to -\infty} \operatorname{Arctan}(x) = -\frac{\pi}{2}$


Valeurs remarquables:

variation quastion .							
x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$			
Arctan(x)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$			

Équation trigonométrique

 $\forall a \in \mathbf{R}, \ \tan(\theta) = a \Leftrightarrow \theta = \operatorname{Arctan}(a) + k\pi(k \in \mathbf{Z})$

4.8(b) Fonction Arctan:

