Programme de khôlles BCPST 1B

Semaine 21 (du 17/03 au 21/03)

Chapitre φ 9 : Description et paramétrage du mouvement d'un point

Chapitre φ 10 : Dynamique du point Chapitre φ 11 : Statique des fluides

- Forces volumiques et forces surfaciques
 - Élement de fluide
 - Forces volumiques
 - Forces surfaciques
- Condition d'équilibre d'un fluide dans un champ de pesanteur
 - Données du problème
 - Équation différentielle fondamentale de la statique
 - Propriétés de la pression dans un fluide dans un champ de pesanteur
 - Démonstration
- Application aux fluides incompressibles
 - Équation barométrique
 - Diverses applications (baromètre et verin)
- Application aux fluides compressibles
 - Modèle de l'atmosphère isotherme
 - Facteur de Boltzmann dans le cas de l'atmosphère isotherme
- Forces de pression exercées par un fluide sur un solide
 - Calcul des forces de pression
 - Poussée d'Archimède

Propositions de questions de cours :

- 1. Établir le champ de pression dans un fluide compressible.
- 2. Établir le champ de pression dans une atmosphère isotherme constituée d'un gaz parfait de masse molaire moyenne $M=29\,\mathrm{g\,mol}^{-1}$
- 3. Démontrer le théorème d'Archimède.
- 4. Expliquer le fonctionnement d'un verin hydraulique (avec calcul de $||\vec{F}||$ à appliquer).
- 5. Expliquer le fonctionnement d'un baromètre au mercure (avec calcul de la dénivellation h).
- 6. Donner l'expression de la résultante des forces de pression en fonction du vecteur élément de surface d^2S_M ou $\overrightarrow{dS_M}$. L'appliquer à un exemple simple (au choix du colleur).
- 7. Appliquer la poussée d'Archimède à un iceberg pour trouver le rapport V_i/V_{tot} (V_{tot} : volume total, V_i : volume immergé).