Devoir Surveillé n°6

Durée : 3 heures

Il sera tenu compte dans l'appréciation des copies de la qualité de la rédaction et de la présentation. L'usage des calculatrices est interdit.

Exercice 1 : Espaces vectoriels

Dans l'espace vectoriel \mathbb{R}^4 , on considère les vecteurs :

$$u = (1, 0, 1, 0)$$
 et $v = (2, 0, 1, 1)$.

On pose E = Vect(u, v) et $F = \{(x, y, z, t) \in \mathbb{R}^4, x + y - z - t = 0\}.$

- 1. a) Montrer que E est un sous-espace vectoriel de \mathbb{R}^4 . En déterminer une base ainsi que la dimension.
 - b) Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 . En déterminer une base ainsi que la dimension.
 - c) Montrer que : $E \subset F$. A-t-on E = F?
 - d) Déterminer un système d'équations cartésiennes de E.
 - e) Écrire en langage Python une fonction APPARTIENT_E prenant pour argument un quadruplet u = (x,y,z,t) et renvoyant True si le vecteur (x,y,z,t) appartient à E, et False sinon.
- 2. On pose $G = \{(a+b, 2a, b, a) \in \mathbb{R}^4, (a,b) \in \mathbb{R}^2\}.$
 - a) Montrer que G est un sous-espace vectoriel de \mathbb{R}^4 . En déterminer une base ainsi que la dimension.
 - b) Montrer que : $Vect(u) \subset E \cap F \cap G \subset E$.
 - c) En déduire les valeurs possibles de : $\dim(E \cap F \cap G)$.
 - d) Montrer que : $v \notin E \cap F \cap G$.
 - e) En déduire que : $E \cap F \cap G = \text{Vect}(u)$.
- 3. Soit m un réel, et v_m le vecteur de \mathbf{R}^4 défini par : $v_m = (1+m, 0, 1-m, 3-2m)$.
 - a) Donner une condition nécessaire et suffisante sur m pour que v_m appartienne à E.
 - b) Donner dans ce cas les coordonnées de v_m selon la base de E trouvée à la question 1a).

Exercice 2 : Géométrie

Dans l'espace muni d'un repère orthonormé, on considère :

- * Le plan $\mathcal P$ passant par le point $A \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ et de vecteur normal $\overrightarrow{n} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$;
- * le plan \mathcal{Q} passant par le point $B\begin{pmatrix} 1\\ -3\\ 1 \end{pmatrix}$ et dirigé par les vecteurs $\overrightarrow{u}\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$ et $\overrightarrow{v}\begin{pmatrix} 0\\ 2\\ 1 \end{pmatrix}$.
- 1. Donner des équations cartésiennes des plans \mathcal{P} et \mathcal{Q} .
- 2. Montrer que les plans \mathcal{P} et \mathcal{Q} sont sécants selon une droite Δ , dont on donnera une représentation paramétrique.
- 3. Soit un réel m. On considère l'ensemble \mathcal{P}_m des points $M \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ de l'espace tels que :

$$(x+2y-z)+m(2x+y-2z+3)=0$$

- a. Justifier que, pour tout réel m, l'ensemble \mathcal{P}_m est un plan.
- b. Montrer que, pour tout réel m, la droite Δ est incluse dans le plan \mathcal{P}_m .
- c. Déterminer une équation cartésienne du plan \mathcal{R} contenant Δ et passant par le point $C \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

- 4. On appelle H le projeté orthogonal du point C sur la droite Δ .
 - a. Déterminer les coordonnées du point H, et en déduire celles du vecteur \overrightarrow{CH} .
 - b. En déduire la distance du point C à la droite Δ .
- 5. On se place dorénavant dans le plan (ACH).

On considère dans ce plan l'ensemble Γ des points M vérifiant : $MA^2 + MC^2 + 2MH^2 = k$, où k est un réel fixé.

On note G le point tel $\overrightarrow{GA} + \overrightarrow{GC} + 2\overrightarrow{GH} = \overrightarrow{0}$

- a. Déterminer les coordonnées du point G.
- b. Montrer que, pour tout point M du plan (ACH), $M \in \Gamma \iff 4MG^2 = k (GA^2 + GC^2 + 2GH^2)$.
- c. En déduire nature et éléments caractéristiques de l'ensemble Γ selon les valeurs du réel k.

Exercice 3: Etude d'une bijection

Pour tout réel x, on pose : $sh(x) = \frac{e^x - e^{-x}}{2}$.

- 1. Dresser le tableau de variations complet de la fonction sh.
- 2. En déduire que sh réalise une bijection de R dans R.
- 3. Pour tout réel x, on pose $a(x) = x + \sqrt{1 + x^2}$.
 - a. Montrer que : $\forall x \in \mathbf{R}, \ a(\operatorname{sh}(x)) = e^x$.
 - b. En déduire l'expression de la bijection réciproque de sh.

Exercice 4: Étude d'une fonction

On considère la fonction f suivante :

$$f: x \longmapsto \left(\frac{x}{x-1}\right)^{x-1} - \left(\frac{x+1}{x}\right)^{x+1}$$

- 1. Déterminer l'ensemble de définition de f puis l'ensemble de continuité de f.
- 2. Montrer que f est impaire.
- 3. a. Montrer que : $\lim_{t\to 0^+} \exp\left(t\ln\left(\frac{1+t}{t}\right)\right) = 1.$
 - b. Montrer que f admet un prolongement par continuité en 1 et en -1.
- 4. Étudier les limites de f en $+\infty$ et en $-\infty$.

Exercice 5 : Étude d'une suite

On considère pour tout entier $n \in \mathbb{N}^*$ l'équation suivante :

$$(E_n)$$
 $x^3 + 2x + 1 = n$.

2

Pour tout $x \in \mathbf{R}$, on pose $f(x) = x^3 + 2x + 1$.

- 1. Montrer que pour tout entier $n \in \mathbf{N}^*$, (E_n) admet une unique solution, notée x_n .
- 2. Montrer que la suite (x_n) est strictement croissante et étudier sa convergence.
- 3. Donner un équivalent de x_n (partir de l'équation (E_n)).