Correction du Devoir Surveillé n°6

Exercice 1: Espaces vectoriels

1.a) Étude du sous-espace vectoriel E: E est un sous-espace vectoriel de \mathbb{R}^4 par

définition d'un sous-espace vectoriel engendré. (u, v) est une famille génératrice de E.

C'est aussi une famille libre car u et v ne sont pas colinéaires. C'est donc une base de E.

E est un s-ev de \mathbb{R}^4 de dimension 2, de base (u,v).

1.b) Étude du sous-espace vectoriel F:

F est d'équation t = x + y - z.

Posons a, b, c les vecteurs de F:

a = (1,0,0,1), b = (0,1,0,1) et c = (0,0,1,-1).

(a,b,c) est une famille libre car rg $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = 3.$

 $\dim(F) < 4 \operatorname{car} F \neq \mathbb{R}^4$, $\operatorname{donc}(a, b, c)$ engendre F.

(a,b,c) est libre, et génératrice de F:

 \underline{c} 'est une base de F.

F est un s-ev de \mathbb{R}^4 de dimension 3, de base (a, b, c).

1.c) E est un sous-espace strict de F:

On vérifie facilement que $u \in F$ et $v \in F$.

Ainsi, $Vect(u, v) = E \subset F$.

Par ailleurs, $\dim(E) < \dim(F)$ donc : $E \subseteq F$

1.d) Système d'équations cartésiennes de E:

E a pour paramétrage : $\begin{cases} y = 0 \\ z = \lambda + \mu \end{cases}$, $(\lambda, \mu) \in \mathbf{R}^2$.

donc $\mu = t$, $\lambda = z - t$ et x = z - t + 2t = z + t.

E a pour système d'équations cartésiennes :

1.e) Fonction testant l'appartenance à E:

def APPARTIENT_E (u) :

$$(x,y,z,t) = u$$

return ($abs(x-z-t) + abs(y) < 10**(-14))$

(2.a) Étude du sous-espace vectoriel G:

$$G = \{(a, 2a, 0, a) + (b, 0, b, 0), (a, b) \in \mathbf{R}^2\}$$

$$G = \{a(1, 2, 0, 1) + b(1, 0, 1, 0), (a, b) \in \mathbf{R}^2\}$$
En posant $w = (1, 2, 0, 1) \in \mathbf{R}^4$, on a écrit:

 $G = \left\{ aw + bu, (a, b) \in \mathbf{R}^2 \right\}$ donc G = Vect(u, w), avec (u, w) une famile libre.

G est un s-ev de \mathbb{R}^4 de dimension 2, et de base (u, w)

2.b) <u>Une double inclusion</u>:

On sait que $u \in E$ et $u \in F$.

En choisissant a = 0 et b = 1, on voit que $u \in G$.

Puisque E, F, G sont des s-ev, on a :

 $Vect(u) \subset E$, $Vect(u) \subset F$ et $Vect(u) \subset G$.

Ainsi, $|\operatorname{Vect}(u) \subset E \cap F \cap G|$

Enfin, il est évident que $E \cap F \cap G \subset E$.

2.c) Dimension de $E \cap F \cap G$:

D'après 2b, et en examinant les dimensions : $\dim(\operatorname{Vect}(u)) \leq \dim(E \cap F \cap G) \leq \dim(E).$

Ainsi : $1 \le \dim(E \cap F \cap G) \le 2$

2.d) $v \notin E \cap F \cap G$:

Les coordonnées de v ne vérifient pas l'équation de F, donc $v \notin F$. Par suite, $v \notin E \cap F \cap G$

2.e) $E \cap F \cap G = \text{Vect}(u)$:

Si dim $(E \cap F \cap G) = 2 = \dim(E)$, alors $E \cap F \cap G = E$, et puisque $v \in E$, on a $v \in E \cap F \cap G$: c'est absurde! Ainsi, $\dim(E \cap F \cap G) = 1$.

Mais $Vect(u) \subset E \cap F \cap G$ avec dim(Vect(u)) = 1

donc: $E \cap F \cap G = Vect(u)$

$$\forall m \in \mathbf{R}, \ v_m \in E \Leftrightarrow \begin{cases} 1 + m = (1 - m) + (3 - 2m) \\ 0 = 0 \end{cases}$$

$$\text{Donc} \quad v_m \in E \Leftrightarrow m = \frac{3}{4}.$$

Donc
$$v_m \in E \Leftrightarrow m = \frac{3}{4}$$
.

3.b) Coordonnées de v_m dans la base (u, v):

$$v_{\frac{3}{4}} = \left(\frac{7}{4}, 0, \frac{1}{4}, \frac{3}{2}\right) = \frac{1}{4}(7, 0, 1, 6)$$
. On cherche des réels λ, μ tels que : $(7, 0, 1, 6) = \lambda u + \mu v$:

$$\begin{cases} \lambda + 2\mu = 7 \\ 0 = 0 \\ \lambda + \mu = 1 \end{cases} \Leftrightarrow \lambda = -5 \text{ et } \mu = 6$$

 $v_{\frac{3}{4}}$ a pour coordonnées $\left(-\frac{5}{4}, \frac{3}{2}\right)$ dans la base (u, v)

Exercice 2 : Géométrie

1. Équations cartésiennes des plans \mathcal{P} et \mathcal{Q} :

$$\mathcal{P}: \overrightarrow{x+2y-z+d} = 0 \text{ où } d \in \mathbf{R}, \text{ car } \overrightarrow{n}(1,2,-1) \text{ normal à } \mathcal{P}.$$

$$A \in \mathcal{P} \text{ donc } 0+2-2+d=0, \text{ d'où : } \boxed{\mathcal{P}: x+2y-z=0}$$

$$\mathcal{Q} \text{ a pour paramétrage} \begin{cases} x = 1 + s \\ y = -3 + 2t \\ z = 1 + s + t \end{cases}, \ (s, t) \in \mathbf{R}^2.$$

On en déduit :
$$s = x - 1$$
 et $t = \frac{1}{2}(y + 3)$ et en réinjectant :

$$z = 1 + x - 1 + \frac{1}{2}(y+3)$$
. Ainsi : $Q: 2x + y - 2z + 3 = 0$

2. ${\mathcal P}$ et ${\mathcal Q}$ sont sécants selon une droite Δ :

 $\overrightarrow{n'}(2,1,-2)$ est normal à Q et \overrightarrow{n} , $\overrightarrow{n'}$ ne sont pas colinéaires. Ainsi \mathcal{P} et \mathcal{Q} ne sont pas parallèles : ils sont donc sécants selon une droite Δ , d'équations cartésiennes :

$$\Delta \begin{cases} x + 2y - z = 0 \\ 2x + y - 2z + 3 = 0 \end{cases}$$
$$\begin{cases} x = \lambda \end{cases}$$

$$\Delta \begin{cases} x + 2y - z = 0 \\ 2x + y - 2z + 3 = 0 \end{cases}$$
Posons $\lambda = x : \Delta \begin{cases} x = \lambda \\ 2y - z = -\lambda \\ y - 2z = -3 - 2\lambda \end{cases} \Leftrightarrow \begin{cases} x = \lambda \\ 3y = 3 \\ 3z = 6 + 3\lambda \end{cases}$

$$\Delta$$
 a pour représentation paramétrique
$$\begin{cases} x = \lambda \\ y = 1 \\ z = 2 + \lambda \end{cases}$$
 $(\lambda \in \mathbf{R})$

$$Remarque : \overrightarrow{u} \bullet \overrightarrow{n} = 0 \text{ donc } \overrightarrow{u} \text{ dirige } \Delta.$$

De plus $A \in \mathcal{Q}$ donc $A \in \mathcal{P} \cap \mathcal{Q}$. On a la même conclusion.

3.a) \mathcal{P}_m est un plan :

Soit $m \in \mathbf{R}$.

Alors
$$\mathcal{P}_m: (1+2m)x + (2+m)y + (-1+3m)z + 3m = 0.$$

Or,
$$\forall m \in \mathbf{R}, \overrightarrow{n''}(1+2m, 2+m, -1+3m) \neq \overrightarrow{0}$$
.

Donc
$$\forall m \in \mathbb{R}, \ \mathcal{P}_m$$
 est un plan de vecteur normal $\overrightarrow{n''}$.

3.b) La droite Δ est incluse dans tous les plans \mathcal{P}_m :

Soit M(x, y, z) un point de Δ .

Alors
$$x + 2y - z = 0$$
 et $2x + y - 2z + 3 = 0$ donc

$$\forall m \in \mathbf{R}, (x+2y-z) + m(2x+y-2z+3) = 0 + m \times 0 = 0$$

donc $M \in \mathcal{P}_m$. Ainsi : $[\forall m \in \mathbf{R}, \Delta \subset \mathcal{P}_m]$

3.c) Équation du plan \mathcal{R} contenant Δ et C:

$$C \in \mathcal{P}_m \Leftrightarrow (1-2) + m(2-4+3) = 0 \Leftrightarrow m = 1$$

donc
$$C \in \mathcal{P}_1$$
. Par ailleurs $\Delta \subset \mathcal{P}_1$

donc le plan
$$\mathcal{R} = \mathcal{P}_1 : x + y - z + 1 = 0$$
 contient Δ et C .

4.a) Projeté orthogonal de $C \operatorname{sur} \Delta$:

Soit $H(\lambda, 1, 2 + \lambda)$ un point de Δ .

Alors H est le projeté orthogonal de C si $\overrightarrow{CH} \bullet \overrightarrow{u} = 0$

avec
$$\overrightarrow{u} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 directeur de Δ , et $\overrightarrow{CH} \begin{pmatrix} \lambda - 1 \\ 1 \\ \lambda \end{pmatrix}$.

donc
$$\overrightarrow{CH} \bullet \overrightarrow{u} = (\lambda - 1) + \lambda = 2\lambda - 1.$$

$$\overrightarrow{CH} \bullet \overrightarrow{u} = 0 \Leftrightarrow \lambda = \frac{1}{2}.$$

$$\text{Ainsi}: \boxed{H\left(\frac{1}{2}\,,\,1\,,\,\frac{5}{2}\right) \,\text{et }\overrightarrow{CH}\left(-\frac{1}{2}\,,\,1\,,\,\frac{1}{2}\right)}.$$

4.b) Distance du point C à la droite Δ :

Cette distance vaut
$$\|\overrightarrow{CH}\| = \sqrt{\left(-\frac{1}{2}\right)^2 + 1^2 + \left(\frac{1}{2}\right)^2}$$

La distance de C à Δ vaut $\sqrt{\frac{3}{2}}$.

5.a) Relation équivalente :

Soit
$$M$$
 un point du plan (ACH) . Alors : $M \in \Gamma$
 $\Leftrightarrow \left(\overrightarrow{MG} + \overrightarrow{GA}\right)^2 + \left(\overrightarrow{MG} + \overrightarrow{GC}\right)^2 + 2\left(\overrightarrow{MG} + \overrightarrow{GH}\right)^2 = k$
 $\Leftrightarrow 4MG^2 + GA^2 + GC^2 + 2GH^2 + 2\overrightarrow{MG} \bullet \overrightarrow{w} = k$
où $\overrightarrow{w} = \overrightarrow{GA} + \overrightarrow{GC} + 2\overrightarrow{GH}$
 $\overrightarrow{w} = \overrightarrow{0}$ par définition du point G .

Ainsi :
$$M \in \Gamma \Leftrightarrow 4MG^2 = k - GA^2 - GC^2 - 2GH^2$$
.

5.b) Coordonnées de G:

Soit O l'origine du repère :

$$\overrightarrow{OG} = \frac{1}{4} \left(\overrightarrow{OA} + \overrightarrow{OC} + 2\overrightarrow{OH} \right) = \frac{1}{4} \begin{pmatrix} 2\\3\\9 \end{pmatrix} = \begin{pmatrix} 1/2\\3/4\\9/4 \end{pmatrix}$$

$$G$$
 a pour coordonnées $G\left(\frac{1}{2}, \frac{3}{4}, \frac{9}{4}\right)$.

5.c) Caractérisation de l'ensemble Γ :

On calcule :
$$GA^2 = \frac{3}{8}$$
, $GC^2 = \frac{7}{8}$, $GH^2 = \frac{1}{8}$.
Il vient alors : $M \in \Gamma \Leftrightarrow 4MG^2 = k - \frac{3}{2}$
 $\Leftrightarrow MG^2 = \frac{2k - 3}{8}$

• Si
$$k < \frac{3}{2}$$
, alors $\Gamma = \emptyset$,

$$\bullet$$
 si $k = \frac{3}{2}$, alors $\Gamma = \{G\}$,

• si
$$k > \frac{3}{2}$$
, alors Γ est, dans le plan (ACH) ,

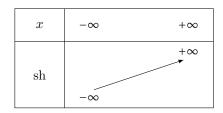
le cercle de centre G et de rayon $\sqrt{\frac{2k-3}{g}}$.

Exercice 3: Tirages dans des urnes

1. sh est définie sur \mathbf{R} , et dérivable sur \mathbf{R} par opérations.

 $\forall x \in \mathbf{R}, \text{ sh}'(x) = \frac{e^x + e^{-x}}{2} > 0 \text{ donc sh est strictement croissante sur } \mathbf{R}.$

Par opérations : $\lim_{x\to -\infty} \sinh(x) = -\infty$ et $\lim_{x\to +\infty} \sinh(x) = +\infty$. Ainsi :



- 2. D'après le tableau de variations de sh, pour tout $y \in \mathbf{R}$, l'équation sh(x) = y possède une unique solution. Ainsi : sh réalise une bijection de R dans R.
- a. Soit $x \in \mathbf{R}$. Alors $a(\operatorname{sh}(x)) = \operatorname{sh}(x) + \sqrt{1 + \operatorname{sh}^2(x)}$.

Or
$$1 + \operatorname{sh}^{2}(x) = 1 + \left(\frac{e^{x} - e^{-x}}{2}\right)^{2} = 1 + \frac{1}{4}\left(e^{2x} - 2 + e^{-2x}\right) = \frac{1}{4}\left(e^{2x} + 2 + e^{-2x}\right) = \frac{1}{4}\left(e^{x} + e^{-x}\right)^{2}$$

Ainsi:
$$a(\operatorname{sh}(x)) = \operatorname{sh}(x) + \sqrt{\frac{1}{4}(e^x + e^{-x})^2} = \frac{e^x - e^{-x}}{2} + \frac{1}{2}|e^x + e^{-x}| = e^x.$$

$$\forall x \in \mathbf{R}, \ a(\operatorname{sh}(x)) = e^x.$$

b. On compose la relation précédente par le logarithme népérien :

 $\forall x \in \mathbf{R}, \ln(a(\operatorname{sh}(x))) = \ln(e^x) = x \quad \text{donc} \quad \ln \circ a \circ \operatorname{sh} = \operatorname{Id}_{\mathbf{R}} \quad \text{ce qui montre que sh}^{-1} = \ln \circ a.$

$$sh^{-1}: x \longmapsto \ln\left(x + \sqrt{1 + x^2}\right)$$

 $\boxed{ \text{sh}^{-1}: x \longmapsto \ln\left(x+\sqrt{1+x^2}\right) }$ sh est le sinus hyperbolique. Sa dérivée est le cosinus hyperbolique, noté ch.

 sh^{-1} se note Argsh. Elle est, comme sh, impaire et strictement croissante sur R.

Exercice 4: Étude d'une fonction

1. Ensemble de définition et continuité :

On a:
$$f: x \mapsto \exp\left((x-1)\ln\left(\frac{x}{x-1}\right)\right) - \exp\left((x+1)\ln\left(\frac{x+1}{x}\right)\right)$$

Donc f est définie en x tel que : $x - 1 \neq 0$ et $x \neq 0$ et $\frac{x}{x - 1} > 0$ et $\frac{x + 1}{x} > 0$.

Or:
$$\frac{x}{x-1} > 0 \iff x \in]-\infty, 0[\cup]1, +\infty[\text{ et } \frac{x+1}{x} > 0 \iff x \in]-\infty, -1[\cup]0, +\infty[.$$
 Donc f est définie sur $\mathcal{D}_f = (]-\infty, 0[\cup]1, +\infty[)\cap (]-\infty, -1[\cup]0, +\infty[)=]-\infty, -1[\cup]1, +\infty[.$

De plus, f est continue sur \mathcal{D}_f par opérations sur des fonctions usuelles continues sur leurs ensembles de définition. f est définie et continue sur $\mathcal{D}_f =]-\infty, -1[\cup]1, +\infty[$

2. f impaire:

Le domaine de définition \mathcal{D}_f de f est symétrique par rapport à l'origine.

De plus, on a pour tout $x \in \mathcal{D}_f$:

$$f(-x) = \left(\frac{-x}{-x-1}\right)^{-x-1} - \left(\frac{-x+1}{-x}\right)^{-x+1} = \left(\frac{x}{x+1}\right)^{-(x+1)} - \left(\frac{x-1}{x}\right)^{-(x-1)} = \left(\frac{x+1}{x}\right)^{x+1} - \left(\frac{x}{x-1}\right)^{x-1}$$

$$f(-x) = -f(x)$$
Ainsi, f est impaire.

3. a. Limite de $\exp\left(t\ln\left(\frac{1+t}{t}\right)\right)$:

Soit
$$t > 0$$
: $t \ln \left(\frac{1+t}{t} \right) = t \ln(1+t) - t \ln(t)$.

Or, par opérations, $\lim_{t\to 0^+} t \ln(1+t) = 0$ et par croissances comparées, $\lim_{t\to 0^+} t \ln t = 0$.

3

Par somme, $\lim_{t\to 0^+} t \ln\left(\frac{1+t}{t}\right) = 0$. Par composée de limite : $\lim_{t\to 0^+} \exp\left(t \ln\left(\frac{1+t}{t}\right)\right) = 1$.

b. f prolongeable par continuité :

Faisons le changement de variable x=1+t. On a donc :

$$f(x) = f(1+t) = \left(\frac{1+t}{t}\right)^t - \left(\frac{2+t}{1+t}\right)^{2+t} = \exp\left(t\ln\left(\frac{1+t}{t}\right)\right) - \exp\left((2+t)\ln\left(\frac{2+t}{1+t}\right)\right)$$

Or: $\lim_{t\to 0} \exp\left((2+t)\ln\left(\frac{2+t}{1+t}\right)\right) = e^{2\ln 2} = 4.$

Ainsi, d'après la question précédente, $\lim_{t\to 0} f(t) = -3$.

f se prolonge donc par continuité en 1 en posant $\tilde{f}(1)$ = -3.

f étant impaire, elle se prolonge aussi par continuité en -1 en posant $\tilde{f}(-1) = -\tilde{f}(1) = 3$.

Conclusion : f se prolonge par continuité en 1 en posant $\tilde{f}(1) = -3$ et en -1 en posant $\tilde{f}(-1) = 3$.

4. Limites à l'infini :

On pose $u = \frac{1}{x}$, de sorte que $u \to 0^+$ quand $x \to +\infty$.

$$f(x) = f\left(\frac{1}{u}\right) = \exp\left(\left(\frac{1}{u} - 1\right)\ln\left(\frac{1/u}{1/u - 1}\right)\right) - \exp\left(\left(\frac{1}{u} + 1\right)\ln\left(\frac{1/u + 1}{1/u}\right)\right)$$
$$= \exp\left(\frac{1 - u}{u}\ln\left(\frac{1}{1 - u}\right)\right) - \exp\left(\frac{1 + u}{u}\ln\left(\frac{1 + u}{1}\right)\right) = \exp\left(\frac{u - 1}{u}\ln(1 - u)\right) - \exp\left(\frac{1 + u}{u}\ln(1 + u)\right)$$

Or,
$$\ln(1-u) \sim -u$$
 et $\ln(1+u) \sim u$

donc
$$\frac{u-1}{u}\ln(1-u) \sim \frac{(u-1)(-u)}{u} = 1 - u \sim 1$$
 et par suite : $\lim_{u\to 0^+} \frac{u-1}{u}\ln(1-u) = 1$

de même,
$$\frac{1+u}{u}\ln(1+u) \sim \frac{(1+u)u}{u} = 1 + u \sim 1$$
 et par suite : $\lim_{u\to 0^+} \frac{1+u}{u}\ln(1+u) = 1$

Par opérations sur les limites, $\lim_{x \to +\infty} f(x) = e^1 - e^1 = 0$.

Puisque
$$f$$
 est impaire :
$$\lim_{x \to -\infty} f(x) = -\lim_{x \to +\infty} f(x) = 0.$$

Exercice 4 : Étude d'une suite

1. f est dérivable (donc continue) sur \mathbf{R} . Pour tout x réel, on $a:f'(x)=5x^2+2>0$.

De plus, $\lim_{t\to\infty} f = -\infty$ et $\lim_{t\to\infty} f = +\infty$ par règles sur les fonctions polynomiales.

f est donc continue et strictement croissante sur l'intervalle ${\bf R}.$

D'après le théorème de la bijection, f réalise une bijection de \mathbf{R} dans $f(\mathbf{R}) = \mathbf{R}$.

Ainsi, pour tout réel y, l'équation f(x) = y possède une unique solution réelle.

En particulier si y = n, pour tout $n \in \mathbf{N}^*$, (E_n) admet une unique solution.

2. Pour tout $n \in \mathbb{N}^*$, $f(x_n) = n < n+1 = f(x_{n+1})$.

Puisque f est strictement croissante, on en déduit que $x_n < x_{n+1}$.

Ainsi, la suite $(x_n)_{n\geqslant 1}$ est strictement croissante.

On sait donc que : ou bien (x_n) converge vers $\ell \in \mathbb{R}$, ou bien (x_n) diverge vers $+\infty$.

Si (x_n) converge vers $\ell \in \mathbf{R}$, alors par continuité de f, $(f(x_n))$ converge vers $f(\ell)$.

Mais $f(x_n) = n$ donc $(f(x_n))$ diverge vers $+\infty$.

Conclusion: La suite (x_n) diverge vers $+\infty$.

3. Pour tout $n \ge 1, x_n^3 + 2x_n + 1 = n$. Mais $x_n \to +\infty$, donc $2x_n + 1 = o(x_n^3)$.

Ainsi, $x_n^3 + 2x_n + 1 \underset{+\infty}{\sim} x_n^3$, donc $x_{n+\infty}^3 \underset{+\infty}{\sim} n$.

On compose par la puissance $\alpha = \frac{1}{3} : x_n \sim n^{\frac{1}{3}}$.

Remarque: on ne sait pas calculer directement les valeurs de la suite (x_n) .

4