Devoir Maison n°8

Exercice 1 : Étude d'un endomorphisme de R³

On note $C = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On considère la matrice

$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est A. On note Id l'application identité de \mathbb{R}^3 .

- 1. a. Déterminer le rang de f. En déduire son noyau et son image.
 - b. Factoriser dans $\mathbf{R}[X]$ le polynôme $Q(x) = -x^3 + 2x^2 + x 2$.
 - c. Soit $\lambda \in \mathbf{R}$. Déterminer, en fonction de λ , le rang de l'application $(f \lambda \mathrm{Id})$.
 - d. Déterminer une base de Ker(f Id), de Ker(f + Id) et de Ker(f 2Id).

On pose u = (1, 1, 1), v = (1, -1, 1) et w = (4, 2, 1).

- 2. a. Montrer que $\mathcal{B} = (u, v, w)$ est une base de \mathbb{R}^3 .
 - b. Écrire la matrice de passage de la base \mathcal{C} à la base \mathcal{B} , qu'on notera P.
 - c. Pourquoi P est-elle inversible? Déterminer P^{-1} .
 - d. Exprimer f(u), f(v) et f(w) en fonction de u, v et w.
 - e. En déduire la matrice de f dans la base \mathcal{B} , qu'on notera D.
 - f. Exprimer A en fonction de D, P et P^{-1} .
 - g. Soit $n \in \mathbb{N}$, exprimer A^n en fonction de D, P et P^{-1} .

On rappelle que pour tout entier n, f^n désigne la composée de f avec elle-même n fois.

- 3. a. Vérifier que $f^3 = 2f^2 + f 2Id$.
 - b. En déduire une expression de A^{-1} en fonction de I_3 , A et A^2 , où I_3 désigne la matrice identité de $\mathcal{M}_3(\mathbf{R})$.
 - c. Montrer que pour tout entier naturel n il existe un triplet (a_n,b_n,c_n) dans ${\bf R}^3$ tel que :

$$A^n = a_n I_3 + b_n A + c_n A^2$$

- d. En déduire que : $\forall n \in \mathbb{N}, D^n = a_n I_3 + b_n D + c_n D^2$.
- e. En déduire pour tout entier naturel n les valeurs de a_n , b_n et c_n en fonction de n. Les formules obtenues sont-elles encore valables lorsque n = -1?

Exercice 2 : Une suite de polynômes

On définit la suite de polynômes (P_n) par : $\begin{cases} P_0(x) = 1 \\ \forall n \ge 0, \ P_{n+1}(x) = x.P_n(x) - P_n'(x) \end{cases}$

- 1. Déterminer les polynômes P_1, P_2, P_3 et P_4 .
- 2. Factoriser dans $\mathbf{R}[X]$ les polynômes P_2, P_3 et P_4 .
- 3. Montrer par récurrence que, pour tout $n \ge 0$, le monôme dominant de P_n est x^n .

On rappelle qu'un polynôme Q est pair, et vérifie donc : $\forall x \in \mathbf{R}, \ Q(-x) = Q(x)$, si et seulement si tous ses monômes de degrés impairs sont nuls, et qu'il est impair, et vérifie donc : $\forall x \in \mathbf{R}, \ Q(-x) = -Q(x)$, si et seulement si tous ses monômes de degrés pairs sont nuls.

- 4. Montrer que, si $Q \in \mathbf{R}[X]$ est pair, alors Q' est impair, et que si Q est impair, alors Q' est pair.
- 5. En déduire que :
 - * si n est pair, alors P_n est pair,
 - * si n est impair, alors P_n est impair.