TD06 – Correction

Exercice 1:

1. $f: x \longmapsto \sqrt{2x} - 3x^4$

La fonction est dérivable sur \mathbb{R}_+^* .

$$\forall x \in \mathbb{R}_{+}^{*}, f'(x) = \frac{1}{\sqrt{x}} - 12x^{3}$$

2. $f: x \longmapsto \frac{2x^3 - x}{\ln x}$

La fonction est dérivable sur
$$\mathbb{R}_+ \setminus \{0; 1\}$$
.

$$\forall x \in \mathbb{R}_+ \setminus \{0; 1\}, \ f'(x) = \frac{(6x^3 - x)\ln(x) - 2x^3 + x}{x(\ln(x))^2}$$

3. $f: x \longmapsto \frac{x^2 - \sqrt{x}}{e^x}$

La fonction est dérivable sur \mathbb{R}_{+}^{*} .

$$\forall x \in \mathbb{R}_+^*, f'(x) = \frac{2x - \frac{1}{2\sqrt{x}} - x^2 + \sqrt{x}}{e^x}$$

4. $f: x \longmapsto e^{x^2} \ln x$

La fonction est dérivable sur \mathbb{R}_+^* .

$$\forall x \in \mathbb{R}_+^*, f'(x) = 2xe^{x^2} \ln x + \frac{e^{x^2}}{x}.$$

5. $f: x \longmapsto x \ln(x) - x$

La fonction est dérivable sur \mathbb{R}_{+}^{*} .

$$\forall x \in \mathbb{R}_+^*, f'(x) = \ln(x).$$

6. $f: x \longmapsto \frac{\ln(x^2 + 1)}{x^2 + 1}$

La fonction est dérivable sur
$$\mathbb{R}$$
.

$$\forall x \in \mathbb{R}_+^*, f'(x) = \frac{2x(1 - \ln(x^2 + 1))}{(x^2 + 1)^2}$$

7. $f: x \longmapsto \frac{x}{\sqrt{x^2+1}}$

La fonction est dérivable sur
$$\mathbb{R}$$
.
$$\forall x \in \mathbb{R}_+^*, f'(x) = \frac{\sqrt{x^2 + 1} - \frac{x^2}{\sqrt{x^2 + 1}}}{x^2 + 1} = \frac{1}{(x^2 + 1)^{3/2}}$$

8. $f: x \longmapsto (x-1)(2-e^{-x})$

La fonction est dérivable sur \mathbb{R} .

$$\forall x \in \mathbb{R}, f'(x) = 2 + xe^{-x}$$

9.
$$f: x \longmapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

La fonction est dérivable sur \mathbb{R} .

$$\forall x \in \mathbb{R}, f'(x) = \frac{4}{(e^x + e^{-x})^2}$$

Exercice 2:

- 1. $\mathcal{D}_f = \mathbb{R} \setminus \{-2\}$ et f est dérivable sur $\mathbb{R} \setminus \{-2\}$ comme quotient de fonctions définies et dérivables sur $\mathbb{R} \setminus \{-2\}$ dont le dénominateur ne s'annule pas sur $\mathbb{R} \setminus \{-2\}$. On a de plus, $\forall x \in \mathbb{R} \setminus \{-2\}$, $f'(x) = \frac{5}{(x+2)^2}$.
- 2. $\mathcal{D}_q = \mathbb{R}$ et g est dérivable sur \mathbb{R} (car c'est une fonction polynômiale) et : $\forall t \in \mathbb{R}, g'(t) = -30(1-5t)^5$.
- 3. $\mathcal{D}_{h} = \mathbb{R}$ et h est dérivable sur \mathbb{R} (car c'est une fonction polynômiale) et : $\forall u \in \mathbb{R}$, $h'(u) = 5u^4 + 8u^3 4u^4 + 8u^4 + 8u$
- 4. $\mathcal{D}_g = \mathbb{R}_+$ et g est dérivable sur \mathbb{R}_+^* (car la fonction racine carrée est définie sur \mathbb{R}_+ et dérivable sur \mathbb{R}_{+}^{*}) et : $\forall y \in \mathbb{R}_{+}^{*}$, $g'(y) = 8y + 6\sqrt{y} + 1$.
- 5. $\mathcal{D}_f = \mathbb{R}$ et f est dérivable sur \mathbb{R} et : $\forall t \in \mathbb{R}$, $f'(t) = 2\cos(2t)$.

6. Soit $x \in \mathbb{R}$, h est définie en $x \iff \begin{cases} x \mapsto x^2 + 1 \text{ est définie en } x \\ x^2 + 1 \in \mathbb{R}_+^* \text{ car } x \mapsto \ln(x) \text{ est définie sur } \mathbb{R}_+^* \end{cases}$

Comme $1 + x^2 > 0$, h est définie sur \mathbb{R}

La fonction $x \mapsto \ln(x)$ est dérivable sur \mathbb{R}^+_* et $x \mapsto x^2 + 1$ est dérivable sur \mathbb{R} .

Par composition la fonction h est dérivable en $x \in \mathbb{R}$, si $x^2 + 1 > 0$. Ce qui est vraie pour tout $x \in \mathbb{R}$. Donc h est dérivable sur \mathbb{R}

- 7. $\mathcal{D}_g = \mathbb{R}$ et g est dérivable sur \mathbb{R} (comme composée de fonctions définies et dérivables sur \mathbb{R}) et : $\forall x \in \mathbb{R}$, $g'(x) = (1 x^2)e^{-\frac{x^2}{2}}$.
- 8. $\mathcal{D}_{\varphi} = \mathbb{R}_{+}$ et φ est dérivable sur \mathbb{R}_{+}^{*} et : $\forall t \in \mathbb{R}_{+}^{*}$, $\varphi'(t) = \frac{\cos(2\sqrt{t})}{\sqrt{t}}$. Pour montrer que la fonction n'est pas dérivable en 0, étudier la limite du taux d'accroissement en 0 et utiliser le fait que $\lim_{t\to 0} \frac{\sin(t)}{t} = 1$. Attention à bien avoir la même expression dans le sinus et au dénominateur pour appliquer cette formule!
- 9. $\mathcal{D}_{\Psi} = \mathbb{R} \setminus \{-\frac{1}{2}\}$ et Ψ est dérivable sur $\mathbb{R} \setminus \{-\frac{1}{2}\}$ comme quotient de fonctions définies et dérivables sur $\mathbb{R} \setminus \{-\frac{1}{2}\}$ dont le dénominateur ne s'annule pas sur $\mathbb{R} \setminus \{-\frac{1}{2}\}$. On a de plus, $\forall x \in \mathbb{R} \setminus \{-\frac{1}{2}\}$, $\Psi'(x) = \frac{-6}{(2x+1)^4}$.
- 10. La fonction Φ est définie et dérivable sur \mathbb{R} . En effet, $\forall x \in \mathbb{R}$, $\Phi(x) = 3^x = e^{x \ln(3)}$ et par conséquent Φ est une composée de fonction définie et dérivable sur \mathbb{R} . On a de plus, $\forall x \in \mathbb{R}$, $\Phi'(x) = \ln(3)3^x$.

Exercice 3:

- 1. \star Soit $x \in \mathbb{R}$, f est définie en $x \iff \begin{cases} x \mapsto 2x^2 3x + 1 \text{ est définie en } x \\ 2x^2 3x + 1 \in \mathbb{R}_+ \end{cases}$, car la fonction racine est définie sur \mathbb{R}_+ . Après l'étude du signe de $2x^2 3x + 1$, on trouve que $\mathcal{D}_f = \left[-\infty, \frac{1}{2} \right] \cup [1, +\infty[$.
 - \star Soit $x \in \mathbb{R}$,

La fonction $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_*^+ .

La fonction $x \mapsto 2x^2 - 3x + 1$ est dérivable sur \mathbb{R} (fonction polynômiale)

Par composition la fonction f est dérivable en $x \in \mathbb{R}$, si $2x^2 - 3x + 1 \in \mathbb{R}^+$. Donc si $2x^2 - 3x + 1 > 0$. En utilisant l'étude de signe faite pour l'ensemble de définition on conclut que f est dérivable sur $\mathcal{D}_d = \left[-\infty, \frac{1}{2}\right] \cup]1, +\infty[$ et

$$\forall x \in \left] -\infty, \frac{1}{2} \right[\cup]1, +\infty[, \ f'(x) = \frac{4x - 3}{2\sqrt{2x^2 - 3x + 1}} \right]$$

- 2. $\star \mathcal{D}_g = \mathbb{R}$ car la fonction g est une composée de fonction définie sur \mathbb{R} .
 - ★ La fonction $x \mapsto |x|$ est dérivable sur \mathbb{R}^* et la fonction $x \mapsto 4x^2 1$ est dérivable sur \mathbb{R} . Donc par composition la fonction g est dérivable en $x \in \mathbb{R}$, si $4x^2 - 1 \neq 0$. C'est à dire si $x \neq \frac{1}{2}$ et $x \neq -\frac{1}{2}$.

On trouve que g est dérivable sur $\mathbb{R} \setminus \left\{-\frac{1}{2}, \frac{1}{2}\right\}$ et

 $\forall x \in \mathbb{R},$

$$g(x) = \begin{cases} 1 - 4x^2 & \text{si } x \in \left[-\frac{1}{2}, \frac{1}{2} \right] \\ 4x^2 - 1 & \text{sinon} \end{cases}$$

et donc $\forall x \in \mathbb{R} \setminus \left\{-\frac{1}{2}, \frac{1}{2}\right\}$,

$$g'(x) = \begin{cases} -8x & \text{si } x \in \left] -\frac{1}{2}, \frac{1}{2} \right[\\ 8x & \text{si } x \in \left] -\infty, -\frac{1}{2} \right[\cup \left] \frac{1}{2}, +\infty \right[\end{cases}$$

3. \star Soit $t \in \mathbb{R}$,

$$h$$
 est définie en $t\iff \left\{\begin{array}{l} t\mapsto \dfrac{1-t}{1+t} \text{ est définie en }x\\ \dfrac{1-t}{1+t}\in\mathbb{R}_+ \end{array}\right.$, car la fonction racine est définie sur \mathbb{R}_+ .

En étudiant le signe du quotient $\frac{1-t}{1+t}$, on trouve que $\mathcal{D}_h =]-1,1]$

★ La fonction $t \mapsto \sqrt{t}$ est dérivable sur \mathbb{R}_*^+ . La fonction $t \mapsto \frac{1-t}{t+1}$ est le quotient de deux fonctions polynomiales dont le dénominateur s'annule en -1. Donc cette fonction est dérivable sur $\mathbb{R}\setminus\{-1\}$. Soit $t \in \mathcal{D}_h$. Par composition la fonction $t \mapsto \sqrt{\frac{1-t}{t+1}}$ est dérivable en t si $\frac{1-t}{t+1} > 0$. C'est à dire, en reprenant l'étude de signe faite, si $t \in]-1,1[$.

Finalement, par produit h est dérivable sur]-1,1[

De plus,

$$\forall t \in]-1,1[, h'(t) = \sqrt{\frac{1-t}{1+t}} \times \frac{1-t-t^2}{1-t^2}$$

4. \star Soit $u \in \mathbb{R}$, $\varphi \text{ est définie en } u \iff \left\{ \begin{array}{c} u \mapsto \ln(u) \text{ est définie en } u \\ \ln(u) \in \mathbb{R} \end{array} \right.$. La fonction φ est définie sur \mathbb{R}^+_* .

 \star La fonction $x\mapsto |x|$ est dérivable sur \mathbb{R}^*

La fonction $u \mapsto \ln(u)$ est dérivable sur \mathbb{R}_*^+ .

Soit $u \in \mathbb{R}_*^+$. Par compostion φ est dérivable en u si $\ln(u) \neq 0$, c'est à dire si $u \neq 1$.

Donc la fonction φ est dérivable sur $\mathbb{R}_*^+ \setminus \{1\}$.

De plus, $\forall u \in \mathbb{R}_+^* \setminus \{1\}$

$$\varphi'(u) = \begin{cases} -\frac{1}{u} & \text{si } u \in]0,1[\\ \frac{1}{u} & \text{si } u \in]1,+\infty[\end{cases}$$

5. La fonction h est une composée de fonction dérivable sur \mathbb{R} . On a donc h est dérivable sur $\mathcal{D}_h = \mathbb{R}$ et

$$\forall x \in \mathbb{R}, \ h'(x) = -12\sin(3x+1)\cos(3x+1)^3$$

6. On a $f(x) = e^{x \ln(x)}$ donc $\mathcal{D}_f = \mathcal{D}_d = \mathbb{R}_+^*$ et

$$\forall x \in \mathbb{R}_+^*, \ f'(x) = (\ln(x) + 1)x^x$$

7. On trouve que g est définie et dérivable sur $\mathbb{R} \setminus \left\{ -\frac{1}{2} \right\}$ (comme quotient de fonction définie et dérivable dont le dénominateur ne s'annule pas) et

$$\forall u \in \mathbb{R} \setminus \left\{-\frac{1}{2}\right\}, \ g'(u) = \frac{-20}{(2u+1)^2} \times \left(\frac{3+u}{2u+1}\right)^3$$

Exercice 4:

1. La fonctions exponentielle est définie et dérivable sur \mathbb{R} .

La fonction racine carrée est définie sur \mathbb{R}^+ et dérivable sur \mathbb{R}^+_* . Les fonctions sinus et carré sont définies et dérivables sur \mathbb{R} .

Par somme la fonction $x \mapsto x^2 + 3\sin(x) + 2\sqrt{x}$ est définie sur \mathbb{R}^+ et dérivable sur \mathbb{R}^+_* .

Par composition la fonction f est définie sur \mathbb{R}^+ et dérivable sur \mathbb{R}^+_* .

Pour tout
$$x \in \mathbb{R}_{*}^{+}$$
, $f'(x) = \left(2x + 3\cos(x) + \frac{1}{\sqrt{x}}\right)e^{x^2 + 3\sin(x) + 2\sqrt{x}}$

2. $f: x \longmapsto (\cos(x) + 3\sin(x))^8$

Les fonctions $x \mapsto x^8$, cosinus et sinus sont définies et dérivables sur \mathbb{R} donc la fonction f est définie et dérivable sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, $f'(x) = 8(-\sin(x) + 3\cos(x))(\cos(x) + 3\sin(x))^7$.

3.
$$f: x \longmapsto \ln\left(\frac{x+2}{x+3}\right)$$

La fonction logarithme est définie et dérivable sur \mathbb{R}_*^+ .

La fonction $x \mapsto \frac{x+2}{x+3}$ est le quotient de deux polynômes dont le dénominateur s'annule en -3. Elle est donc définie et dérivable sur $\mathbb{R} \setminus \{-3\}$.

Soit $x \in \mathbb{R}$. Par composition la fonction f est définie en x si et seulement $\frac{x+2}{x+3} > 0$ et dérivable en x si $\frac{x+2}{x+3} > 0$.

Or $x + 2 \ge 0 \Leftrightarrow x \ge -2$ et $x + 3 \ge 0 \Leftrightarrow x \ge -3$. En s'aidant d'un tableau de signe si besoin :

$$\frac{x+2}{x+3}>0 \stackrel{-}{\Leftrightarrow} x\in]-\infty, -3[\cup]-2, +\infty[.$$

Donc la fonction f est définie et dérivable sur $]-\infty,-3[\cup]-2,+\infty[$ et pour tout $x\in]-\infty,-3[\cup]-2,+\infty[$:

$$f'(x) = \frac{1}{(x+3)^2} \frac{x+3}{x+2} = \frac{1}{(x+3)(x+2)}$$

4. La fonction exponentielle est définie et dérivable sur \mathbb{R} . Les fonctions polynôme sont définies et dérivables sur \mathbb{R} . Donc par composition $x\mapsto e^{x^2-1}$ est définie et dérivable sur \mathbb{R} . Finalement par produit f est définie et dérivable sur \mathbb{R} .

Pour tout
$$x \in \mathbb{R}$$
, $f'(x) = 2e^{x^2-1} + 2x(2x-1)e^{x^2-1} = 2(2x^2-x+1)e^{x^2-1}$.

5. La fonction exponentielle est définie et dérivable sur \mathbb{R} et la fonction inverse est définie sur \mathbb{R}^* . Donc la fonction $x \mapsto e^{\frac{1}{x}}$ est définie et dérivable sur \mathbb{R}^* .

La fonction racine carrée est définie sur \mathbb{R}^+ et dérivable sur \mathbb{R}^+ .

La fonction $x \mapsto x^2 + 3x + 2$ est un ploynôme et est donc définie et dérivable sur \mathbb{R} .

Soit $x \in \mathbb{R}$. Par composition la fonction $x \mapsto \sqrt{x^2 + 3x + 2}$ est définie en x si et seulement si $x^2 + 3x + 2 \ge 0$ et dérivable en x si $x^2 + 3x + 2 > 0$.

La fonction $x \mapsto x^2 + 3x + 2$ est un polynôme du second degré. Ses racines sont -1 et -2. Le coefficient devant x^2 est positif donc $x^2 + 3x + 2 \ge 0 \Leftrightarrow x \in]-\infty, -2] \cup [-1, +\infty[$.

Donc la fonction f est définie sur $]-\infty,-2]\cup[-1,+\infty[$ et dérivable sur $]-\infty,-2[\cup]-1,+\infty[$.

Pour tout $x \in]-\infty, -2[\cup]-1, +\infty[:$

$$f'(x) = -\frac{e^{\frac{1}{x}}}{x^2}\sqrt{x^2 + 3x + 2} + e^{\frac{1}{x}}\frac{2x + 3}{2\sqrt{x^2 + 3x + 2}}$$

6. $f: x \longmapsto (x+1)\ln(\sqrt{2x+1})$

La fonction racine carrée est définie sur \mathbb{R}^+ , et dérivable sur \mathbb{R}^+_* .

La fonction $x \mapsto 2x + 1$ est définie et dérivable sur \mathbb{R} .

Soit $x \in \mathbb{R}$. Par composition la fonction $x \mapsto \sqrt{2x+1}$ est définie en x si et seulement si $2x+1 \ge 0$ et dérivable en x si 2x+1 > 0.

Donc $x \mapsto \sqrt{2x+1}$ est définie sur $\left[-\frac{1}{2}, +\infty\right[$ et dérivable sur $\left]-\frac{1}{2}, +\infty\right[$.

La fonction logarithme est définie et dérivable sur \mathbb{R}_{*}^{+} .

Soit $x \in \mathbb{R}$, par composition la fonction $x \mapsto \ln(\sqrt{2x+1})$ est définie en x si et seulement si $\sqrt{2x+1} > 0$ et dérivable si $\sqrt{2x+1} > 0$.

Or $\sqrt{2x+1} > 0 \Leftrightarrow x \in \left] -\frac{1}{2}, +\infty \right[$. En effet la racine carrée d'un nombre est positive et $\sqrt{2x+1} = 0 \Leftrightarrow x = -\frac{1}{2}$.

Donc la fonction $x \mapsto \ln(\sqrt{2x+1})$ est définie et dérivable sur $]-\frac{1}{2},+\infty[$.

Par produit la fonction f est définie et dérivable sur $\left]-\frac{1}{2},+\infty\right[$.

Donc pour tout $x \in \left] -\frac{1}{2}, +\infty \right[$:

$$f'(x) = \ln(\sqrt{2x+1}) + (x+1)\frac{1}{\sqrt{2x+1}}\frac{1}{\sqrt{2x+1}} = \ln(\sqrt{2x+1}) + \frac{x+1}{2x+1}$$

Exercice 5:

$$a: x \mapsto x^3 \cos(x+1)$$

a est définie sur \mathbb{R} . Les fonctions $x \mapsto x^3$ et $x \mapsto \cos(x+1)$ sont dérivables sur \mathbb{R} . a est donc dérivable sur \mathbb{R} comme produit de fonctions dérivables.

Pour $x \in \mathbb{R}$, on a

$$a'(x) = 3x^2 \cos(x+1) - x^3 \sin(x+1)$$

 $b: x \mapsto e^{\cos(x)}$

b est définie sur \mathbb{R} . La fonction cosinus est dérivable sur \mathbb{R} et à valeurs dans [-1,1] et la fonction exponentielle est dérivable sur \mathbb{R} . b est donc dérivable sur \mathbb{R} comme composition de fonctions dérivables.

Pour $x \in \mathbb{R}$, on a

$$b'(x) = -\sin(x)e^{\cos(x)}$$

 $c: x \mapsto x \ln(x)$

c est définie sur \mathbb{R}_+^* . Les fonction $x \mapsto x$ et $x \mapsto \ln(x)$ sont dérivables sur \mathbb{R}_+^* . c est donc dérivable sur \mathbb{R}_+^* comme produit de fonctions dérivables.

Pour $x \in \mathbb{R}_+^*$, on a

$$c'(x) = \ln(x) + 1$$

 $d: x \mapsto \ln(e^x + 1)$

La fonction $x \mapsto e^x + 1$ est définie sur \mathbb{R} à valeurs dans \mathbb{R}_+^* et la fonction $x \mapsto \ln(x)$ est définie sur \mathbb{R}_+^* . d est donc définie sur \mathbb{R} . La fonction $x \mapsto e^x + 1$ est dérivable sur \mathbb{R} à valeurs dans \mathbb{R}_+^* et la fonction $x \mapsto \ln(x)$ est dérivable sur \mathbb{R}_+^* . d est donc dérivable sur \mathbb{R} comme composition de fonctions dérivables.

Pour $x \in \mathbb{R}$, on a

$$d'(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$$

 $e: x \mapsto e^{x^3 + 2x^2 + 3x + 4}$

e est définie sur \mathbb{R} . La fonction $x \mapsto x^3 + 2x^2 + 3x + 4$ est dérivable sur \mathbb{R} et à valeurs dans \mathbb{R} et la fonction exponentielle est dérivable sur \mathbb{R} . d est donc dérivable sur \mathbb{R} comme composition de fonctions dérivables.

Pour $x \in \mathbb{R}$, on a

$$e'(x) = (3x^2 + 4x + 3)e^{x^3 + 2x^2 + 3x + 4}$$

 $f: x \mapsto e^{\sqrt{x^2+x+1}}$

La fonction $x \mapsto x^2 + x + 1$ est définie sur \mathbb{R} à valeurs dans \mathbb{R}_+^* , la fonction $x \mapsto \sqrt{x}$ est définie sur \mathbb{R}_+ et la fonction $x \mapsto e^x$ est définie sur \mathbb{R} . f est donc définie sur \mathbb{R} . La fonction $x \mapsto x^2 + x + 1$ est dérivable sur \mathbb{R} et à valeurs dans \mathbb{R}_+^* , la fonction $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* et la fonction $x \mapsto e^x$ est dérivable sur \mathbb{R} . f est donc dérivable sur \mathbb{R} comme composition de fonctions dérivables.

Pour $x \in \mathbb{R}$, on a

$$f'(x) = \frac{(2x+1)e^{\sqrt{x^2+x+1}}}{2\sqrt{x^2+x+1}}$$

 $g: x \mapsto \frac{x}{x^2+1}$

La fonction $x \mapsto x^2 + 1$ est définie sur \mathbb{R} et à valeurs dans \mathbb{R}_+^* . La fonction $x \mapsto x$ est définie sur \mathbb{R} . h est alors définie sur \mathbb{R} comme quotient de fonctions dont le dénominateur ne s'annule jamais. La fonction $x \mapsto x^2 + 1$ est dérivable sur \mathbb{R} et à valeurs dans \mathbb{R}_+^* . La fonction $x \mapsto x$ est dérivable sur \mathbb{R} . h est alors dérivable sur \mathbb{R} comme quotient de fonctions dérivables dont le dénominateur ne s'annule jamais.

Pour $x \in \mathbb{R}$, on a

$$h'(x) = \frac{1 - x^2}{1 + x^2}$$

 $h: x \mapsto \frac{\cos(2x)}{x^2 - 2}$

La fonction $x \mapsto x^2 - 2$ est définie sur \mathbb{R} et s'annule en $\sqrt{2}$ et $-\sqrt{2}$. La fonction $x \mapsto \cos(2x)$ est définie sur \mathbb{R} . i est alors définie sur $\mathbb{R} \setminus \{-\sqrt{2}, \sqrt{2}\}$. La fonction $x \mapsto x^2 - 2$ est dérivable sur \mathbb{R} et s'annule en $\sqrt{2}$ et $-\sqrt{2}$. La fonction $x \mapsto \cos(2x)$ est dérivable sur \mathbb{R} . i est alors dérivable sur tout intervalle inclus dans $\mathbb{R} \setminus \{-\sqrt{2}, \sqrt{2}\}$ comme quotient de fonctions dérivables et

En particulier, pour $x \in]\sqrt{2}, +\infty[$, on a

$$i'(x) = -\frac{(2x^2 - 4)\sin(x) + 2x\cos(2x)}{(x^2 - 2)^2}$$

$i: x \mapsto \ln(\cos(2x))$

La fonction $x \mapsto \ln(x)$ est définie sur \mathbb{R}_+^* $x \mapsto \cos(2x)$ est définie sur \mathbb{R} et à valeurs dans [-1,1]. On sait que, pour $x \in \mathbb{R}$, $\cos(2x)$ est strictement positif si et seulement si x est dans un intervalle de la forme $]\alpha\pi - \frac{\pi}{4}, \alpha\pi\frac{\pi}{4}[$ avec k un entier relatif. Ainsi j est définie sur $\bigcup_{\alpha \in \mathbb{Z}}]\alpha\pi - \frac{\pi}{4}, \alpha\pi\frac{\pi}{4}[$. La fonction $x \mapsto \ln(x)$ est dérivable sur \mathbb{R}_+^* $x \mapsto \cos(2x)$ est dérivable sur \mathbb{R} . j est alors dérivable sur tout intervalle inclus dans son ensemble de définition comme composée de fonction dérivables.

En particulier, pour $x \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[$, on a

$$j'(x) = \frac{-2\sin(2x)}{\cos(2x)}$$

$$j: x \mapsto \frac{x}{\sin(x)}$$

La fonction $x \mapsto x$ est définie et dérivable sur \mathbb{R} . La fonction $x \mapsto \sin(x)$ est définie et dérivable sur \mathbb{R} et s'annule sur $\pi\mathbb{Z}$. k est alors définie sur $\mathbb{R} \setminus \pi\mathbb{Z}$ et dérivable sur tout intervalle inclus dans $\mathbb{R} \setminus \pi\mathbb{Z}$ comme quotient de fonctions dérivables.

En particulier, pour $x \in]0, \pi[$, on a

$$k'(x) = \frac{\sin(x) - x\cos(x)}{\sin(x)^2}$$

$$k: x \mapsto \ln(x - \sqrt{x^2 - 1})$$

Alors la fonction l est définie sur $[1, +\infty[$ et dérivable sur $]1, +\infty[$ comme composition de fonctions dérivables.

Pour $x \in]1, +\infty[$, on a

$$l'(x) = \frac{-1}{\sqrt{x^2 - 1}}$$

$$l: x \mapsto \ln\left(\sqrt{\frac{x+1}{x-1}}\right)$$

La fonction $x \mapsto \frac{x+1}{x-1}$ est définie sur $\mathbb{R} \setminus \{1\}$ et dérivable sur tout intervalle inclus dans $\mathbb{R} \setminus \{1\}$. Elle est positive sur $]-\infty,-1]\cup]1,+\infty[$. Ainsi la fonction $x\mapsto \frac{x+1}{x-1}$ est définie sur $]-\infty,-1]\cup]1,+\infty[$ et dérivable sur tout intervalle inclus dans $]-\infty,-1[\cup]1,+\infty[$ comme composée de fonctions dérivables. La fonction m est alors définie sur $]-\infty,-1[\cup]1,+\infty[$ et dérivable sur tout intervalle inclus dans $]-\infty,-1[\cup]1,+\infty[$. En particulier, pour $x\in]1,+\infty[$, on a

$$m'(x) = \frac{1}{1 - x^2}$$

$$m: x \mapsto \ln(\ln(x))$$

La fonction $x \mapsto \ln(x)$ est définie et dérivable sur \mathbb{R}_+^* , elle prend des valeurs strictement positives sur $]1, +\infty[$. n est alors définie et dérivable sur $]1, +\infty$ comme composée de fonctions dérivables.

Pour $x \in]1, +\infty[$, on a

$$n'(x) = \frac{1}{x \ln(x)}$$

$$n: x \mapsto \ln(\ln(\ln(x)))$$

La fonction $x \mapsto \ln(\ln(x))$ est définie et dérivable sur $]1, +\infty[$, elle prend des valeurs strictement positives sur $]e, +\infty[$. La fonction o est alors définie et dérivable sur $]e, +\infty$ comme composée de fonctions dérivables.

Pour $x \in]e, +\infty[$, on a

$$o'(x) = \frac{1}{x \ln(x) \ln(\ln(x))}$$

o:
$$x \mapsto \ln(1 + \exp(-\frac{1}{x}))$$

La fonction $x \mapsto -\frac{1}{x}$ est définie sur \mathbb{R}^* et dérivable sur tout intervalle inclus dans \mathbb{R}^* . Ainsi la fonction $x \mapsto 1 + \exp\left(-\frac{1}{x}\right)$ est définie sur \mathbb{R}^* et dérivable sur tout intervalle inclus dans \mathbb{R}^* . Elle prend des valeurs toujours strictement positives. Donc p est définie sur \mathbb{R}^* et dérivable sur tout intervalle inclus dans \mathbb{R}^* comme composée de fonctions dérivables.

En particulier, pour $x \in \mathbb{R}_+^*$, on a

$$p'(x) = \frac{1}{x^2 \left(1 + \exp\left(\frac{1}{x}\right)\right)}$$

$$p: x \mapsto \frac{e^x}{x}$$

La fonction $x \mapsto x$ est définie et dérivable sur \mathbb{R} , elle ne s'annule qu'en 0. Ainsi q est définie sur \mathbb{R}^* et dérivable sur tout intervalle inclus dans \mathbb{R}^* comme composée de fonctions dérivables.

En particulier, pour $x \in \mathbb{R}_+^*$, on a

$$q'(x) = \frac{(x-1)e^x}{x^2}$$

$$q: x \mapsto \cos(x) \left(1 + \tan(x) \tan\left(\frac{x}{2}\right)\right)$$

La fonction $x \mapsto \cos(x)$ est définie et dérivable sur \mathbb{R} . La fonction $x \mapsto \tan(x)$ est définie sur $\mathbb{R} \setminus \{\frac{\pi}{2} + \alpha \pi, \alpha \in \mathbb{Z}\}$ et est dérivable sur tout intervalle inclus dans $\mathbb{R} \setminus \{\frac{\pi}{2} + \alpha \pi, \alpha \in \mathbb{Z}\}$. La fonction $x \mapsto \tan\left(\frac{x}{2}\right)$ est définie sur $\mathbb{R} \setminus \{\pi + 2\beta \pi, \beta \in \mathbb{Z}\}$ et est dérivable sur tout intervalle inclus dans $\mathbb{R} \setminus \{\pi + 2\beta \pi, \beta \in \mathbb{Z}\}$. Ainsi r est définie sur $\mathbb{R} \setminus \left(\frac{\pi}{2} + \alpha \pi, \alpha \in \mathbb{Z}\right) \cup \{\pi + 2\beta \pi, \beta \in \mathbb{Z}\}$ et est dérivable sur tout intervalle inclus dans son ensemble de définition comme produit de fonctions dérivables.

En particulier, pour $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a

$$r'(x) = 0$$

En effet, si on effectue des simplifications trigonométriques, on peut se rendre compte que, pour tout $x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \alpha \pi, \ \alpha \in \mathbb{Z}\right) \cup \left\{\pi + 2\beta \pi, \ \beta \in \mathbb{Z}\right\}\right)$, r(x) = 1

$$\mathbf{r}: x \mapsto \sqrt{(x^x)^{2x+1}}$$

La fonction $x \mapsto x^x$ est définie sur \mathbb{R}_+^* par $x^x = e^{x \ln(x)}$. Elle prend des valeurs strictement positives et elle est dérivable sur \mathbb{R}_+^* . Pour $x \in R_+^x$ on peut réécrire $(x^x)^{2x+1} = \exp((2x+1)\ln(e^{x\ln(x)}) = \exp((2x^2+x)\ln(x))$. La fonction $x \mapsto \exp((2x^2+x)\ln(x))$ est définie et dérivable sur R_+^* et prend des valeurs strictement positives. De plus la fonction $x \mapsto \sqrt{x}$ est définie sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* . Ainsi s est définie et dérivable sur \mathbb{R}_+^* comme composée de fonctions dérivables

Pour $x \in \mathbb{R}_+^*$, on a

$$s'(x) = \frac{(x^x)^{2x+1} \left((2x+1) \left(\ln(x) + 1 \right) + 2 \cdot x \cdot \ln(x) \right)}{2\sqrt{(x^x)^{2x+1}}}$$

Exercice 6:

1. f est une fonction polynômes, elle est donc dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $f'(x) = 6x^2 - 12x$. On étudie le signe de la dérivée. Pour tout $x \in \mathbb{R}$,

$$f'(x) = 6x^2 - 12x = x(6x - 12)$$

Donc la dérivée est une fonction polynôme de degré 2 qui a pour racine 0 et 2. Le coefficient devant x^2 étant positif, f' est négative sur [0,2] est positive sur $\mathbb{R} \setminus [0,2]$. Donc

x	$-\infty$	0		2		$+\infty$
f'	-	+ 0	_	0	+	
f		3 -		-5		<i></i>

La fonction f est donc strictement croissante sur $]-\infty,0]$ et sur $[2,+\infty[$. Elle est strictement décroissante sur [0,2].

2. f est une fonction polynômes, elle est donc dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $f'(x) = -40x^4 - 16x^3$ On étudie le signe de la dérivée. Pour tout $x \in \mathbb{R}$:

$$f'(x) = -40x^4 - 16x^3 = -8x^3(5x+2)$$

x	$-\infty$		$-\frac{2}{5}$		0		$+\infty$
$-8x^3$		+		+	0	_	
5x+2		_	0	+		+	
f'		_	0	+	0	_	
f		•	$-\frac{9439}{3125}$		-3		<u></u>

La fonction f est donc strictement décroissante sur $\left]-\infty,-\frac{2}{5}\right]$ et $\left[0,+\infty\right[$. Elle est strictement croissante sur $\left[-\frac{2}{5},0\right]$. On pourra remarquer que $-\frac{9439}{3125}\approx-3.02048$. La croissance sur $\left[-\frac{2}{5},0\right]$ est très faible.

3. La fonction f est définie sur \mathbb{R}^* . La fonction f est dérivable sur \mathbb{R}^* comme la somme de fonctions dérivables sur \mathbb{R}^* . Donc pour tout $x \in \mathbb{R}^*$,

$$f'(x) = -\frac{9}{x^4} + \frac{7}{x^8}$$

On étudie le signe de la dérivée. On sait que pour tout $x \in \mathbb{R}^*$:

$$f'(x) = -\frac{9}{x^4} + \frac{7}{x^8} = \frac{-9x^8 + 7x^4}{x^{12}} = \frac{-x^4(9x^4 - 7)}{x^{12}} = \frac{-x^4(3x^2 - \sqrt{7})(3x^2 + \sqrt{7})}{x^{10}}$$
$$= \frac{-x^4(\sqrt{3}x - \sqrt{\sqrt{7}})(\sqrt{3}x + \sqrt{\sqrt{7}})(3x^2 + \sqrt{7})}{x^{12}}$$

Pour tout $x \in \mathbb{R}^*$, $x^{12} > 0$ et $3x^2 + \sqrt{7} > 0$. Donc le signe de f'(x) est le même que celui de l'expression $-x^4(\sqrt{3}x - \sqrt{\sqrt{7}})(\sqrt{3}x + \sqrt{\sqrt{7}})$.

x	$-\infty$	$-\sqrt{\sqrt{7}}/\sqrt{7}$	/3	0	$\sqrt{\sqrt{7}}/\sqrt{5}$	3	$+\infty$
$-x^4$	_		_	_		_	
	_		_	_	0	+	
$\sqrt{3}x + \sqrt{\sqrt{7}}$	_	0	+	+		+	
f'	_	0	+	+	0	_	
f	,	$\int \int \int \int \int \int \frac{\sqrt{\sqrt{3}}}{\sqrt{3}} ds$			$f\left(\frac{\sqrt{\sqrt{7}}}{\sqrt{3}}\right)$		→

La fonction f est donc strictement croissante sur $\left]-\infty, -\sqrt{\sqrt{7}}/\sqrt{3}\right]$ et sur $\left]0, \sqrt{\sqrt{7}}/\sqrt{3}\right]$. Elle est strictement décroissante sur $\left[-\sqrt{\sqrt{7}}/\sqrt{3}, 0\right[$ et sur $\left[\sqrt{\sqrt{7}}/\sqrt{3}, +\infty\right[$.

Notons que la fonction est impaire et admet l'origine pour centre de symétrie (ce qui est cohérent avec le tableau de variation).

4. La fonction f est le quotient deux fonctions polynomiales dont le dénominateur s'annule en 0 et -3. DOnc la fonction f est définie et dérivable sur $D_f = \mathbb{R} \setminus \{0, -3\}$ Pour tout $x \in D_f$,

$$f'(x) = -2 \times \frac{2(x-1)x(x+3) - (x-1)^2(2x+3)}{(x^2+3x)^2}$$

$$= -2 \times \frac{(x-1)(2x^2+6x-2x^2-x+3)}{(x^2+3x)^2}$$

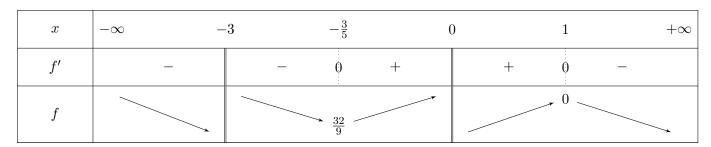
$$= -2 \times \frac{(x-1)(5x+3)}{(x^2+3x)^2}$$

$$= -2 \times \frac{5x^2-2x-3}{(x^2+3x)^2}$$

Pour tout $x \in D_f$,

$$f'(x) = -2 \times \frac{(x-1)(5x+3)}{(x^2+3x)^2}$$

Le dénominateur de f' est positif. Le signe de f' est donc le même que celui de son numérateur qui est un polynôme du second degré défini pour tout $x \in \mathbb{R}$ par p(x) = -2(x-1)(5x+3). Donc :



La fonction f est strictement croissante sur $\left[-\frac{3}{5},0\right[$ et sur]0,1]. Elle est strictement décroissante sur $]-\infty,-3[,]-3,-\frac{3}{5}]$ et $[1,+\infty[$.

5. La fonction f est définie sur \mathbb{R}^+ . Le numérateur est dérivable sur $D =]0, +\infty[$. Le dénominateur est une fonction polynôme, donc dérivable sur \mathbb{R} . La fonction f est un quotient de fonctions dérivables sur D donc est dérivable sur D. Pour tout $x \in D$:

$$f'(x) = \frac{\frac{1}{2\sqrt{x}}(2x+3) - 2\sqrt{x}}{(2x+3)^2}$$
$$= \frac{\sqrt{x} + \frac{3}{2\sqrt{x}} - 2\sqrt{x}}{(2x+3)^2}$$
$$= \frac{-2x+3}{2\sqrt{x}(2x+3)^2}$$

La fonction f est définie sur \mathbb{R}^+ et est dérivable sur \mathbb{R}^+_* . Pour tout $x \in \mathbb{R}^+_*$:

$$f'(x) = \frac{-2x+3}{2\sqrt{x}(2x+3)^2}$$

Pour $x \in \mathbb{R}^{+*}$, $\sqrt{x} > 0$, $(2x+3)^2 > 0$, $-2x+3 \ge 0 \Leftrightarrow x \le \frac{3}{2}$.On conclut que pour tout $x \in \left]0, \frac{3}{2}\right[$, f'(x) > 0 et $f'\left(\frac{3}{2}\right) = 0$. Donc f est strictement décroissante sur $\left[0, \frac{3}{2}\right[$ et strictement croissante sur $\left[\frac{3}{2}, +\infty\right[$.

Exercice 7:

1. La fonction f est définie sur \mathbb{R}^2 . On a $\forall (x,y) \in \mathbb{R}^2$,

$$\frac{\partial f}{\partial x}(x,y) = 2xy\cos(2x+y) - 2x^2y\sin(2x+y) \quad \text{et} \quad \frac{\partial f}{\partial y}(x,y) = x^2\cos(2x+y) - x^2y\sin(2x+y)$$

2. La fonction g est définie sur \mathbb{R}^2 . On a $\forall (x,y) \in \mathbb{R}^2$,

$$\frac{\partial g}{\partial x}(x,y) = 2xy + e^y$$
 et $\frac{\partial g}{\partial y}(x,y) = x^2 + xe^y + 1$

Exercice 8:

1. On a $g(x,y) = e^{y \ln(x)}$ donc le domaine de définition de g est l'ensemble des couples (x,y) tels que x > 0 et $y \in \mathbb{R}$, soit $\mathcal{D}_g = \mathbb{R}_+^* \times \mathbb{R}$. De plus,

$$\frac{\partial g}{\partial x}(x,y) = yx^{y-1}$$
 et $\frac{\partial g}{\partial y}(x,y) = \ln(x)x^y$

2. On a $\mathcal{D}_h = \mathbb{R}_+ \times \mathbb{R}$ et

$$\frac{\partial h}{\partial r}(r,\theta) = \frac{1 - 3r^2}{2\sqrt{r}(1 + r^2)^2}\cos(\theta) \quad \text{et} \quad \frac{\partial h}{\partial \theta}(r,\theta) = -\frac{\sqrt{r}}{1 + r^2}\sin(\theta)$$

3. On a $\mathcal{D}_k = \{(s,t) \in \mathbb{R}^2; st > 0\} = (\mathbb{R}_+)^2 \cup (\mathbb{R}_-)^2$. De plus,

$$\frac{\partial k}{\partial s}(s,t) = \frac{1}{2}\sqrt{\frac{t}{s}}$$
 et $\frac{\partial k}{\partial t}(s,t) = \frac{1}{2}\sqrt{\frac{s}{t}}$

Exercice 9:

1. La fonction T est définie et dérivable sur \mathbb{R}_+^* (somme de fonction définie et détivable sur \mathbb{R}_+^*). On a $\forall v \in \mathbb{R}_+^*$,

$$T'(v) = (0,3965T_C - 11,37) \times 0,16v^{0.84}.$$

2. La fonction Y est un quotient de 2 fonctions définies et dérivables sur \mathbb{R}_+^* . Le dénominateur ne s'annule pas. La fonction Y est définie est dérivable sur \mathbb{R}_+^* .

On a $\forall p \in \mathbb{R}_+^*$,

$$Y'(p) = \frac{2,8p^{1,8}(K+p^{2,8}) - 2,8p^{1,8}p^{2,8}}{(K+p^{2,8})^2} = \frac{2,8Kp^{1,8}}{(K+p^{2,8})^2}.$$

Exercice 10:

1. La fonction inverse est définie sur \mathbb{R}^* donc f est définie si et seulement si $x \mapsto \lfloor x \rfloor$ est définie et $|x| \neq 0$.

Or la fonction partie entière est définie sur \mathbb{R} et $\lfloor x \rfloor \neq 0 \Leftrightarrow x \notin [0, 1[$.

Ainsi par composition, $\mathcal{D}_f = \mathbb{R} \setminus [0, 1[=]-\infty, 0[\cup[1, +\infty[$

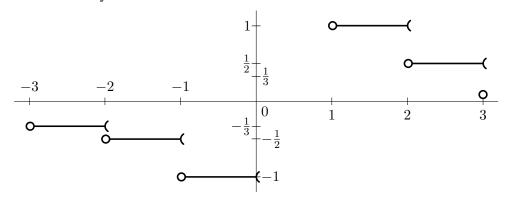
2. (a) La fonction inverse est dérivable sur \mathbb{R}^*

La fonction partie entière est dérivable sur $\bigcup_{n\in\mathbb{Z}}]n,n+1[$

D'autre part $|x| \neq 0 \Leftrightarrow x \notin [0,1[$.

Ainsi par composition, la fonction f est dérivable sur $\mathcal{D}_f \setminus \mathbb{Z} = \bigcup_{n \in \mathbb{Z}^*} [n, n+1[.]]$

- (b) On a $\forall x \in \mathcal{D}_f \setminus \mathbb{Z}$, $f'(x) = -\frac{0}{\lfloor x \rfloor^2} = 0$ car la fonction partie entière est de dérivée nulle en tout point où elle est dérivable.
- 3. Graphe de la fonction f:



Exercice 11:

Partie A : étude des limites de f

1. Soit $x \in \mathbb{R}$,

$$f \text{ est définie en } x \iff \begin{cases} x \mapsto \mathrm{e}^{-x} \text{ est définie en } x \\ x \mapsto \ln(1+\mathrm{e}^x) \text{ est définie en } x \end{cases}$$

$$\iff \begin{cases} x \in \mathbb{R} & \text{car exponentielle est définie sur } \mathbb{R} \\ x \mapsto 1+\mathrm{e}^x \text{ est définie en } x \\ 1+\mathrm{e}^x \in \mathbb{R}^*_+ & \text{car le logarithme est définie sur } \mathbb{R} \end{cases}$$

$$\iff \begin{cases} x \in \mathbb{R} & \text{car exponentielle est définie sur } \mathbb{R} \\ 1+\mathrm{e}^x \in \mathbb{R}^*_+ & \text{toujours vraie car exponentielle est à valeurs positive} \\ \iff x \in \mathbb{R} \end{cases}$$

L'ensemble de définition de f est : $\mathcal{D}_f = \mathbb{R}$

2. (a) Soit $x \in \mathbb{R}$. En factorisant par e^x à l'intérieur du logarithme, il vient :

$$f(x) = e^{-x} \ln \left(e^{x} (e^{-x} + 1) \right) - \frac{1}{2} = e^{-x} \left(\underbrace{\ln(e^{x})}_{=x} + \ln(1 + e^{-x}) \right) - \frac{1}{2}$$
$$= x e^{-x} + e^{-x} \ln(1 + e^{-x}) - \frac{1}{2}$$

et comme $e^{-x} = \frac{1}{e^x}$, on obtient le résultat souhaité : $\forall x \in \mathbb{R}, \ f(x) = \frac{x}{e^x} + e^{-x} \ln(1 + e^{-x}) - \frac{1}{2}$

(b) On sait que $\lim_{x\to +\infty} \frac{x}{\mathrm{e}^x} = 0$ (croissances comparées).

De plus, $\lim_{x\to +\infty} \mathrm{e}^{-x} = 0$ et $\lim_{y\to 0} \ln(1+y) = \ln(1) = 0$. D'après le théorème concernant la limite d'une fonction composée, on a $\lim_{x\to +\infty} \ln(1+\mathrm{e}^{-x}) = 0$ et $\lim_{x\to +\infty} \mathrm{e}^{-x} \ln(1+\mathrm{e}^{-x}) = 0 \times 0 = 0$.

Par conséquent, $\lim_{x\to +\infty} f(x) = -\frac{1}{2}$

- 3. Pour tout $x \in \mathbb{R}$, on a $f(x) = \frac{\ln(1 + e^x)}{e^x}$. Or, quand x tend vers $-\infty$, $h = e^x$ tend vers 0. En utilisant le théorème concernant la limite d'une fonction composée, on a donc $\lim_{x \to -\infty} f(x) = \lim_{h \to 0} \frac{\ln(1+h)}{h} \frac{1}{2} = \frac{1}{2}$ d'après le rappel de l'énoncé. Finalement, $\lim_{x \to -\infty} f(x) = \frac{1}{2}$
- 4. Conséquences graphiques :

la courbe $\mathcal C$ admet deux asymptotes horizontales, la droite d'équation $y=\frac{1}{2}$ en $-\infty$ et la droite d'équation $y=-\frac{1}{2}$ en $+\infty$.

Partie B : étude des variations de f et construction de $\mathcal C$

1. Soit $t \in \mathbb{R}$,

$$g$$
 est définie en $t\iff \left\{ egin{array}{ll} t\mapsto rac{t}{1+t} \mbox{ est définie en } t \\ t\mapsto \ln(1+t) \mbox{ est définie en } t \end{array} \right.$ $\iff \left\{ egin{array}{ll} t\neq -1 \\ 1+t>0 \mbox{ car le logarithme est définie sur } \mathbb{R}_+^* \\ \iff x\in]-1 \ ; \ +\infty[\end{array} \right.$

Le domaine de définition de g est $\mathcal{D}_g =]-1, +\infty[$

2. (a) La fonction g est dérivable sur l'intervalle $[0, +\infty[$ comme somme de fonctions dérivables. Pour démontrer que g est strictement décroissante sur $[0, +\infty[$, on étudie le signe de sa dérivée.

Pour tout $t \in [0, +\infty[$,

$$g'(t) = \frac{1}{(1+t)^2} - \frac{1}{1+t} = -\frac{t}{(1+t)^2}$$

Ainsi, g'(0) = 0 et pour tout t > 0, on a g'(t) < 0. On en conclut donc bien que :

la fonction g est strictement décroissante sur l'intervalle $[0, +\infty[$

(b) La fonction g étant strictement décroissante sur $[0, +\infty[$, on sait en particulier que pour tout t > 0, g(t) < g(0) et donc g(t) < 0 (puisque g(0) = 0). Ainsi,

$$\forall t > 0, \qquad g(t) < 0$$

3. (a) La fonction f est dérivable sur \mathbb{R} comme composée et produit de fonctions dérivables et pour tout nombre réel x, on a

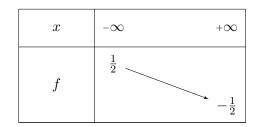
$$f'(x) = -e^{-x}\ln(1 + e^{-x}) + e^{-x}\frac{e^x}{1 + e^x} = e^{-x}\left(\underbrace{\frac{e^x}{1 + e^x} - \ln(1 + e^{-x})}_{=g(e^x)}\right)$$

Finalement, $\forall x \in \mathbb{R}, \ f'(x) = e^{-x}g(e^x)$

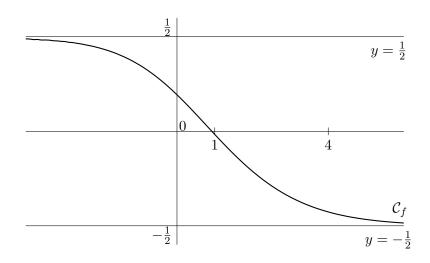
(b) Soit $x \in \mathbb{R}$. Comme $e^x \in]0, +\infty[$, on a $g(e^x) < 0$ (car la fonction g est strictement négative sur l'intervalle $]0, +\infty[$ d'après la question 2. (b)). De plus, $e^{-x} > 0$ donc $f'(x) = e^{-x}g(e^x) < 0$. Il s'ensuit donc que

la fonction f est strictement décroissante sur $\mathbb R$

En reprenant les limites de la fonction f en $-\infty$ et $+\infty$ obtenues aux questions 2. (b) et 3. de la **Partie A**, on obtient le tableau de variation de f suivant :



- (c) La fonction f est continue strictement décroissante de] $-\infty$; $+\infty$ [à valeur dans] $-\frac{1}{2}$; $\frac{1}{2}$ [. Comme $0 \in]-\frac{1}{2}$; $\frac{1}{2}$ [, d'après le théorème de la bijection l'équation f(x)=0 admet une unique solution dans \mathbb{R} .
- 4. Graphe \mathcal{C} de la fonction f (pour gagner de la place, l'unité graphique n'est pas respectée dans le corrigé) :



Exercice 12:

1. (a) Les polynômes sont définis, continus et dérivable sur R. La fonction racine carrée est définie et continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* . Ainsi, par composition, f est définie et continue en tout nombre réel x vérifiant $x(x+2) \ge 0$. On reconnaît un trinôme du second degré de racines 0 et -2 qui est donc positif à l'extérieur des racines. Ainsi

 $|\mathcal{D}_f| = |-\infty, -2| \cup [0, +\infty[$ et f est continue sur ce domaine. Par ailleurs, f est dérivable en tout nombre réel x vérifiant x(x+2) > 0. Donc f est dérivable sur $-\infty, -2[\cup]0, +\infty[$

(b) Soit $x \in]-\infty, -2] \cup [0, +\infty[$. Alors

$$f(x) = 0 \iff x + 1 - \sqrt{x(x+2)} = 0 \iff \sqrt{x(x+2)} = x + 1$$

Cette équation n'a donc des solutions que pour $x+1 \ge 0$, c'est à dire sur $[-1, +\infty] \cap \mathcal{D}_f = [0, +\infty]$. Sur cet intervalle, les deux membres sont positifs d'où

$$f(x) = 0 \Leftrightarrow x(x+2) = (x+1)^2 \iff 0 = 1$$

Ceci est absurde donc l'équation n'admet aucune solution sur \mathcal{D}_f .

- (c) D'après la question précédente, f, étant continue sur $]-\infty, -2]$ et sur $[0, +\infty[$, est de signe constant $\sup]-\infty, -2]$ et sur $[0, +\infty[$. Or f(0) = 1 > 0 et f(-2) = -1 < 0. Ainsi $| \forall x \in]-\infty, -2]$, f(x) < 0 et $\forall x \in [0, +\infty[$.
- (a) La fonction logarithme est définie sur \mathbb{R}_+^* donc g est définie en tout nombre réel x tel que $x + 1 - \sqrt{x(x+2)} > 0$ soit f(x) > 0. Ainsi $|\mathcal{D}_g = [0, +\infty[$
 - (b) D'après la question 1., f est dérivable sur $]-\infty, -2[\cup]0, +\infty[$. Ainsi par composition, g est dérivable sur $\mathcal{D}_g \cap (]-\infty, -2[\cup]0, +\infty[)$. Autrement dit; g est dérivable sur \mathbb{R}_+^* et pour tout x > 0, on a

$$g'(x) = \frac{f'(x)}{f(x)} \operatorname{avec} f'(x) = 1 - \frac{x+1}{\sqrt{x(x+2)}} \operatorname{d'où} g'(x) = \frac{1 - \frac{x+1}{\sqrt{x(x+2)}}}{x+1 - \sqrt{x(x+2)}}, \operatorname{soit} \left[g'(x) = \frac{-1}{\sqrt{x(x+2)}} \right].$$

Ainsi, pour tout $x \in \mathcal{D}_g$, on a g'(x) < 0 donc

la fonction g est (strictement) décroissante sur \mathbb{R}_+

(c) Soit $x \in \mathbb{R}_{+}^{*}$. En utilisant la quantité conjuguée, il vient

$$g(x) = \ln((x+1-\sqrt{x(x+2)}) \times \frac{x+1+\sqrt{x(x+2)}}{x+1+\sqrt{x(x+2)}})$$

c'est-à-dire
$$g(x)=\ln\left(\frac{(x+1)^2-x(x+2)}{x+1+\sqrt{x(x+2)}}\right)$$
, soit $g(x)=\ln\left(\frac{1}{x+1+\sqrt{x(x+2)}}\right)$. On a $\lim_{x\to +\infty}\left(x+1+\sqrt{x(x+2)}\right)=+\infty$ donc $\lim_{x\to +\infty}\frac{1}{x+1+\sqrt{x(x+2)}}=0^+$. Par ailleurs, $\lim_{x\to 0^+}\ln(X)=-\infty$ donc par composition, $\lim_{x\to +\infty}g(x)=-\infty$

On a
$$\lim_{x \to +\infty} \left(x + 1 + \sqrt{x(x+2)} \right) = +\infty$$
 donc $\lim_{x \to +\infty} \frac{1}{x+1+\sqrt{x(x+2)}} = 0^+$. Par ailleurs,

$$\lim_{X\to 0^+} \ln(X) = -\infty$$
 donc par composition, $\lim_{x\to +\infty} g(x) = -\infty$

(d) En récapitulant les résultats des questions précédentes, on obtient le tableau de variations :

x	0 +	$-\infty$
g'(x)	_	
g	0	-∞