
TD09 – Primitives

TD09 – Correction

Exercice 1:

1. Les primitives sur R+
∗ sont a 7→ 5

6a
6 − ln(a)− 3

6a6
+ 2

15(5a)
3
2 + C où C ∈ R.

On pense que 1
a7

= a−7 et que pour a ∈ R+
∗ ,

√
5a = (5a)

1
2 .

Enfin on peut remarquer que la forme des primitives trouvée peut être réécrite qui donne une primitive
sur R+ :

a 7→ 5
6a

6 − ln(a)− 1
2a6

+ 2
155a

√
5a+ C où C ∈ R, la fonction a 7→ 5a

√
5a étant dérivable en 0.

Toute simplification faite : a 7→ 5
6a

6 − ln(a)− 1
2a6

+ 2
3a

√
5a+ C où C ∈ R

2. Les primitives sur R+
∗ sont x 7→ e2x

2 + 3x ln(3x)−3x
3 − x−8

−8 + C où C ∈ R.

Ce qui après simplification donne x 7→ e2x

2 + x ln(3x)− x+ 1
8x8 + C où C ∈ R.

On n’oublie pas que 1
x9 = x−9. Pour déterminer une primitive de x 7→ ln(3x) on s’est servi de la

primitive que l’on connâıt de x 7→ ln(x). Appelons la g : x 7→ x ln(x). Donc une primitive de x 7→ ln(3x)

est x 7→ g(3x)
3 .

Une autre manière de procéder afin de gérer ce coefficient 3 est de remarquer que pour tout x ∈ R+
∗ ,

ln(3x) = ln(3) + ln(x). Une primitive de x 7→ ln(3x) est donc x 7→ ln(3)x+ x ln(x)− x qui est égale à
la primitive que nous avons trouvée.

3. Les primitives sur R+
∗ sont x 7→ −4

√
3x
3 + x8

24 + 2
5x

5
2 + C où C ∈ R. Ce qui peut se réécrire :

x 7→ −4
√
3x
3 + x8

24 + 2
5x

2√x+ C

4. Les primitives sur R sont x 7→ ln(|x2+cos(2x)+2|)
2 + C où C ∈ R. Remarquons que pour tout x ∈ R,

x2+cos(2x)+2 ≥ 1 donc on peut réécrire notre primitive : x 7→ ln(x2+cos(2x)+2)
2 +C où C ∈ R et cette

fonction est bien dérivable sur R (puisque que la fonction logarithme est dérivable sur R+
∗ ).

5. Il faut savoir que la dérivée de tan est x 7→ 1
cos2(x)

. Soit x ∈
]
−π

2 ,
π
2

[
, remarquons que :

4

cos2(x) tan4(x)
= 4× 1

cos2(x)

(
tan(x)

)−4

Donc les primitives sur
]
−π

2 ,
π
2

[
sont x 7→ −4

(
tan(x)

)−3

3 + C, ou écrit autrement :

x 7→ − 4

3
(
tan(x)

)3 + C.

6. Les primitives sur R sont u 7−→ −2 ecos(u) + C où C ∈ R.

7. Les primitives sur

]
−∞,

1

7

[
sont x 7−→ −2

√
1− 7x

7
+

sin(3x)

3
+ C où C ∈ R.

8. En écrivant l’expression sous la forme 2t(1+ t2)−3, on trouve que les primitives sur R sont les fonctions

F de la forme F (t) =
(1 + t2)−2

−2
+ C =

−1

2(1 + t2)2
+ C où C ∈ R.

9. Les primitives sur
]
−∞,−5

2

[
sont u 7−→ −1

4(2u+ 5)2
+C où C ∈ R et les primitives sur

]
−5

2 ,+∞
[
sont

u 7−→ −1

4(2u+ 5)2
+ C ′ où C ′ ∈ R

Exercice 2:

1. Par somme, f est une fonction continue sur R∗. Donc f admet des primitive sur ]−∞, 0[ et sur ]0,+∞[.
Les primitives de f sur ]−∞, 0[ sont les fonctions x 7→ 1

4x
4 + x2 − 1

4x+ ln(−x) + C où C ∈ R et les
primitives de f sur ]0,+∞[ sont les fonctions x 7→ 1

4x
4 + x2 − 1

4x+ ln(x) + C ′ où C ′ ∈ R. On cherche
la primitive F qui s’annule en a = 1, c’est à dire telle que F (1) = 0.
Sur ]0,+∞[ (1 ∈]0,+∞[), on a vu que les primitives étaient de la forme x 7→ 1

4x
4+x2− 1

4x+ln(x)+C ′

où C ′ ∈ R. Il faut donc prendre C ′ = −1. La primitive de f sur ]0,+∞[ qui s’annule en 1 est la fonction
F définie par ∀x ∈]0,+∞[, F (x) = 1

4x
4 + x2 − 1

4x+ ln(x)− 1.
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TD09 – Primitives

Remarque : si l’on parle de primitives de f sur R∗ s’annulant en 1, il en existe une infinité et elles
sont de la forme :

x 7→


1

4
x4 + x2 − 1

4
x+ ln(x)− 1 si x > 0

1

4
x4 + x2 − 1

4
x+ ln(x) + C si x < 0

avec C ∈ R.
2. La fonction g est continue sur R comme quotient de fonctions continues (la fonction x 7−→ x2 + 3 est

continue sur R à valeurs dans R∗
+ où la fonction racine carrée est continue). On sait alors que g admet

des primitives sur R. On reconnâıt ici une expression du type
u′

2
√
u
. Plus exactement, on a

x√
x2 + 3

=
2x

2
√
x2 + 3

On sait que que les primitives de g sur R sont les fonctions G de la forme G(x) =
√
x2 + 3 + C où

C ∈ R. On cherche la primitive G de g s’annulant en 1. Il s’agit donc de trouver la constante C telle
que G(1) = 0. On trouve que C = −2. La primitive cherchée est donc G : x 7−→

√
x2 + 3− 2.

3. h est une fonction définie et continue sur R. Donc elle admet des primitives sur R. On reconnait la
forme u′eu. Les primitives de h sur R sont de les fonctions H de la forme H(t) = e t

2
+ C, où C ∈ R.

Pour trouver la primitive de h qui s’annule en −1, on prend C = −e . La primitive de h qui s’annule
en −1 est la fonction t 7→ e t

2 − e

4. La primitive de k qui s’annule en π est la fonction θ 7→ 1
2 sin(2θ).

Exercice 3:

f(x) =
x

1 + x2
=

1

2

2x

1 + x2
La fonction f est continue sur R (quotient de fonction continue sur R dont le dénominateur ne s’annule

pas.) Donc f admet des primitives sur R.
Les primitives de la fonction f sont les fonctions de la forme : F (x) = ln(1 + x2) + C avec C ∈ R

g(x) =
e3x

1 + e3x
=

1

3

3e3x

1 + e3x
La fonction g est continue sur R (quotient de fonction continue sur R dont le dénominateur ne s’annule

pas.) Donc g admet des primitives sur R.
Les primitives de la fonction g sont les fonctions de la forme : G(x) = 1

3 ln(1 + e3x) avec C ∈ R

h(x) =
lnx

x
=

1

x
ln(x)

La fonction h est continue sur R∗
+ (quotient de fonction continue sur R∗

+ dont le dénominateur ne s’annule
pas.) Donc h admet des primitives sur R.

Les primitives de la fonction h sont les fonctions de la forme : H(x) = 1
2 ln(x)

2 + C avec C ∈ R

k(x) = cos(x) sin2(x) =
1

3
3 cos(x) sin2(x)

La fonction k est continue sur R (quotient de fonction continue sur R dont le dénominateur ne s’annule
pas.) Donc k admet des primitives sur R.

Les primitives de la fonction k sont les fonctions de la forme : K(x) = 1
3 sin(x)

3 avec C ∈ R

l(x) =
1

x lnx
=

1

x
ln(x)

La fonction l est continue sur ]0; 1[ et sur ]1;+∞[ (quotient de fonction continue sur ]0; 1[ et sur ]1;+∞[
dont le dénominateur ne s’annule pas.) Donc l admet des primitives sur ]0; 1[ et sur ]1;+∞[.

Les primitives de la fonction l sont les fonctions de la forme : L(x) = ln(ln(x)) + C avec C ∈ R
m(x) = 3x

√
1 + x2 =

3

2
2x(1 + x2)1/2

La fonction m est continue sur R (quotient de fonction continue sur R dont le dénominateur ne s’annule
pas.) Donc m admet des primitives sur R.

Les primitives de la fonction m sont les fonctions de la forme : M(x) = (1 + x2)3/2 + C avec C ∈ R.
Exercice 4:

1. f(x) = (3x− 1)(3x2 − 2x+ 3)3 = 1
84(6x− 2)(3x2 − 2x+ 3)3

Les primitives sont les fonctions de la forme : F (x) = 1
8(3x

2 − 2x+ 3)4 + C
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TD09 – Primitives

2. f(x) = 1−x2

(x3−3x+1)3
= 1

6(−2(3x2 − 3)(x3 − 3x+ 1)−3)

Les primitives sont les fonctions de la forme : F (x) = 1
6(x

3 − 3x+ 1)−2 + C

3. f(x) = (x−1)√
x(x−2)

Les primitives sont les fonctions de la forme F (x) =
√

x(x− 2) + C

4. f(x) = 1
x ln(x2)

= 1
2

1
x

ln(x

Les primitives sont les fonctions de la forme F (x) = 12
ln (ln(x)) + C

Exercice 5:∫ π
3
0 (1− cos(3x)) dx =

[
x− 1

3 sin(3x)
]π

3
0
= π

3∫ √
π

0 x sin(x2) dx =
[−1

2 cos(x2)
]√π

0
= 1∫ 2

1

√
ln(x)

x dx =
[
2
3(ln(x))

3/2
]2
1
= 2

3(ln(2))
3/2

Exercice 6:

1. I = ln

(
3

8

)
2. J = 2 ln(2)− ln(3)

3. On utilise le fait que tan(x) =
sin(x)

cos(x)
et on trouve que K = − ln

(√
3

2

)
.

4. L =

[
ln(x)2

2

]e
1

=
1

2

Exercice 7:

1. On pose pour tout x ∈ [0 ; 2π],

u(x) = x v(x) = 1
3 sin(3x) .

Les fonctions u et v sont de classe C1 sur [0 ; 2π] donc pour tout x ∈ [0 ; 2π],

u′(x) = 1 v′(x) = cos(3x) .

On peut donc effectuer une intégration par partie.

I =
[x
3
sin(3x)

]2π
0

−
∫ 2π

0

1

3
sin(3x)dx = 0.

2. On pose pour tout t ∈ [0 ; 2],

u(t) = t v(t) = 2e
t
2
+2 .

Les fonctions u et v sont de classe C1 sur [0 ; 2] et pour tout t ∈ [0 ; 2],

u′(t) = 1 v′(t) = e
t
2
+2 .

On peut donc effectuer une intégration par partie.

J =
[
2te

t
2
+2

]2
0
−
∫ 2

0
2e

t
2
+2dt = 4e 3 − 4e3 + 4 = 4

3. On pose pour tout x ∈ [0 ; π
2 ],

u(x) = 2x+ 4 v(x) = −1
2 cos(2x− 1) .

Les fonctions u et v sont de classe C1 sur [0 ; π
2 ] et pour tout x ∈ [0 ; π

2 ],

u′(t) = 2 v′(t) = sin(2x) .

On peut donc effectuer une intégration par partie.

K =

[
−(2x+ 4)

2
cos(2x)

]π
2

0

−
∫ π

2

0
− cos(2x)dx =

π

2
+ 4
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TD09 – Primitives

4. On pose pour tout x ∈ [−1 ; 2],

u(x) = t2 v(t) = e t
2
.

Les fonctions u et v sont de classe C1 sur [−1 ; 2] et pour tout x ∈ [−1 ; 2],

u′(x) = 2t v′(x) = 2te t
2
.

On peut donc effectuer une intégration par partie.

L =
[
t2e t

2
]2
−1

−
∫ 2

−1
2te t

2
dt = 4e 4 − e − e 4 + e = 3e 4

Exercice 8:

1. Faire deux intégrations par parties : avec le choix u(x) = sin(x) et v′(x) = e 3x au début, on trouve

que I = e 3π + 1− 9I et donc I =
e 3π + 1

10
.

2. On fait deux intégrations par parties en dérivant à chaque fois le polynôme. On trouve J = 1− 5e−2

2
.

3. Après deux intégrations par parties (en intégrant l’exponentielle), on trouve que K = −1 + 2e
π
4 − 4K

et donc K =
−1 + 2e

π
4

5
.

Exercice 9:

1. Cette fonction est continue sur R∗
+ donc elle admet des primitives sur R∗

+. On peut calculer, par
exemple,

F (x) =

∫ x

1
(2t+ 1) ln(t)dt pour tout x ∈ R∗

+

Il s’agit de la primitive de f sur R∗
+ s’annulant en 1. On procède par intégration par parties (en posant

u′(t) = 2t+1 et v(t) = ln(t) ; ne pas oublier la rédaction et dire que les fonctions sont de classe C1 sur

un certain intervalle). On trouve que F (x) = (x2 + x) ln(x)− x2

2
− x+

3

2
et donc les primitives de f

sur R∗
+ sont les fonctions de la forme

x 7−→ (x2 + x) ln(x)− x2

2
− x+ C où C ∈ R

2. La fonction admet des primitives sur

]
− π

2
,
π

2

[
car elle est continue sur cet intervalle. On calcule par

exemple

F (x) =

∫ x

0

θ

cos(θ)2
dθ pour tout x ∈

]
− π

2
,
π

2

[
à l’aide d’une intégration par parties. Avec le choix u(θ) = θ et v′(θ) =

1

cos(θ)2
, on trouve que

F (x) = x tan(x) + ln(cos(x)) et donc les primitives de la fonction sur

]
− π

2
,
π

2

[
sont de la forme

x 7−→ x tan(x) + ln(cos(x)) + C où C ∈ R.
3. On cherche les primitives de la fonction sur R (la fonction étant continue sur R, elle admet des

primitives sur R). Pour tout x ∈ R, on calcule F (x) =

∫ x

0
t2 cos(3t)dt à l’aide de deux intégrations

par parties (en dérivant le polynôme). On trouve que les primitives sont de la forme

x 7−→ x2 sin(3x)

3
+

2x cos(3x)

9
− 2 sin(3x)

27
+ C où C ∈ R
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TD09 – Primitives

4. La fonction est continue sur R∗
+ donc elle admet des primitives sur R∗

+. Pour tout x ∈ R∗
+, on peut

calculer F (x) =

∫ x

1
sin(ln(t))dt (primitive s’annulant en 1). On a besoin de deux intégrations par

parties. Pour la première, on pose u′(t) = 1 et v(t) = sin(ln(t)). On aboutit après les deux intégrations
par parties à F (x) = x sin(ln(x)) − x cos(ln(x)) − F (x). On isole ensuite F (x) et on trouve que les
primitives de x 7−→ sin(ln(x)) sur R∗

+ sont les fonctions de la forme

x 7−→ x(sin(ln(x))− cos(ln(x)))

2
+ C

où C ∈ R.
Exercice 10:

1. (a) Soit x ∈ R \ {1; 2}. On commence par réduire au même dénominateur :

a

x− 1
+

b

x− 2
=

(a+ b)x− 2a− b

(x− 1)(x− 2)
=

(a+ b)x− 2a− b

x2 − 3x+ 2

On procède alors par identification : on ne peut avoir l’égalité
(a+ b)x− 2a− b

x2 − 3x+ 2
=

1

x2 − 3x+ 2

que si a+b = 0 et−2a−b = 1. On est alors ramené à la résolution du système

{
a + b = 0

−2a − b = 1
dont la résolution conduit à a = −1 et b = 1. Finalement,

1

x2 − 3x+ 2
=

−1

x− 1
+

1

x− 2

(b) On utilise la décomposition précédente pour calculer l’intégrale proposée. On trouve que K =
2 ln(3)− 3 ln(2).

2. (a) En procédant par identification, on trouve que a = b = 1.

(b) En utilisant la décomposition précédente, on obtient I =
1

2
− ln(2).

Exercice 11:
Notons I l’intégrale à calculer. On commence par étudier le signe de |x2 − x| suivant les valeurs de x :

l’expression sous la valeur absolue est positive sur ]−∞, 0] ∪ [1, +∞ et négative sur [0, 1]. D’après la relation
de Chasles,on a donc

I =

∫ 0

−1
|x2 + x| dx+

∫ 1

0
|3x− x2| dx+

∫ 2

1
|x2 + x| dx

On étudie ensuite le signe de x2 + x et 3x− x2 sur les intervalles d’intégration précédents pour calculer les

trois intégrales ci-dessus. On trouve que l’intégrale vaut
31

6
.

Exercice 12:

1. Le nombre d’individu après une heure est

W (1) =

∫ 1

0
102e 0,1tdt+ 103 = 103 × (e 0,1 − 1) + 103 = 103 × e 0,1

2. Le nombre d’individu après une heure est

W (2) =

∫ 2

0
102e 0,1tdt+ 103 = 103 × (e 0,2 − 1) + 103 = 103 × e 0,2

Exercice 13:

1. Le volume d’air au bout de 2,5 secondes est

V (2, 5) =

∫ 2,5

0

1

2
sin

2πt

5
dt =

[
− 5

π
cos

2πt

5

]2,5
0

=
10

π
.

Le volume d’air au bout de 5 secondes est

V (5) =

∫ 5

0

1

2
sin

2πt

5
dt =

[
− 5

π
cos

2πt

5

]5
0

= 0.
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2. Comme d est continue sur R V est définie sur R.

∀T ∈ R, V (T ) =

[
− 5

π
cos

2πt

5

]T
0

=
5

π
− 5

π
cos

2πT

5
.

V est une fonction périodique sur R de période 5. On peut donc étudier V sur un intervalle de longueur
5. Prenons l’intervalle [0 ; 5]. La dérivée de V ′ est

∀T ∈ R, V ′(T ) = d(t).

L’étude du signe de V ′ sur [0 ; 5] nous donne que V est croissante sur [0 ; 2, 5] et décroissante sur
[2, 5 ; 5 ].

3. La fonction V est 5 périodique. On retrouve le caractère cyclique de l’acte de respirer ainsi que la
durée du cycle. Le modèle ne contredit pas les observations.

Exercice 14:
On rappelle que pour tout entier naturel n, on a

In =

∫ e

1
x2(ln(x))n dx

Partie A : premiers calculs

1. On a I0 =

∫ e

1
x2 dx =

[
x3

3

]e
1

d’où I0 =
e 3 − 1

3
.

2. On a I1 =

∫ e

1
x2 ln(x) dx. On calcule cette intégrale à l’aide d’une intégration par parties. Posons

u′(x) = x2 et v(x) = ln(x). On a alors u(x) =
x3

3
et v′(x) =

1

x
. Les fonctions u et v sont de classe C1

sur l’intervalle [1, e ] donc on peut intégrer par parties sur cet intervalle et on a :

I1 =

[
x3 ln(x)

3

]e
1

−
∫ e

1

x3

3
× 1

x
dx =

e 3

3
−
∫ e

1

x2

3
dx =

e 3

3
−
[
x3

9

]e
1

d’où I1 =
2 e 3 + 1

9
.

Partie B : convergence de la suite (In)n∈N

1. Soit n ∈ N.
(a) Pour tout x ∈ [1, e ], on a ln(x) ⩾ 0 (car la fonction ln est croissante sur R∗

+ et ln(1) = 0).
Donc ln(x)n ⩾ 0 et comme x ⩾ 0 (car x ⩾ 1), on a x2 ln(x)n ⩾ 0. Comme e ⩾ 1 (les bornes

d’intégrations sont dans le bon sens), on a par positivité de l’intégrale

∫ e

1
x2 ln(x)n dx ⩾ 0,

c’est-à-dire In ⩾ 0 .

(b) Soit x ∈ [1, e ]. On a ln(x)n+1 − ln(x)n = ln(x)n(ln(x) − 1). Or on a déjà vu que ln(x)n ⩾ 0
et ln(x) ⩽ ln(e ) (car x ⩽ e et car la fonction ln est croissante sur l’intervalle [1, e ]), c’est-
à-dire ln(x) ⩽ 1, soit encore ln(x) − 1 ⩽ 0. On a donc ln(x)n+1 − ln(x)n ⩽ 0, c’est-à-dire

ln(x)n+1 ⩽ ln(x)n .

(c) Pour tout x ∈ [1, e ], on a x2 ln(x)n+1 ⩽ x2 ln(x)n d’après l’inégalité précédemment obtenue

et car x2 ⩾ 0. Par croissance de l’intégrale, on a donc (comme 1 ⩽ e )

∫ e

1
x2 ln(x)n+1 dx ⩽∫ e

1
x2 ln(x)ndx, c’est-à-dire In+1 ⩽ In . On en conclut donc que la suite (In)n∈N est décroissante.

2. On sait que la suite (In)n∈N est décroissante et d’après la question 1., elle est minorée par 0. D’après

le théorème de la limite monotone, la suite (In)n∈N est convergente .
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Partie C : recherche de la limite de (In)n∈N

1. (a) La fonction f est dérivable sur l’intervalle [1, e ] comme différence de fonctions qui le sont et pour

tout x ∈ [1, e ], on a f ′(x) =
1

x
− 1

e
=

e − x

e x
⩾ 0 car x ∈ [1, e ]. On en conclut que la fonction f

est croissante sur l’intervalle [1, e ].

x

f

1 e

−e−1−e−1

00

(b) D’après le tableau de variation de f , pour tout x ∈ [1, e ], on a f(x) ⩽ 0, c’est-à-dire ln(x)− x

e
⩽ 0,

soit encore 0 ⩽ ln(x) ⩽
x

e
car on sait que x ⩾ 1 donc ln(x) ⩾ 0.

2. Soit n ∈ N. On a déjà établi dans la partie précédente que In ⩾ 0. Soit x ∈ [1, e ]. On sait que ln(x) ⩽
x

e

donc, en élevant à la puissance n, il vient ln(x)n ⩽
xn

en
puis, en multipliant par x2 ⩾ 0, on obtient

x2 ln(x)n ⩽
xn+2

en
. Par croissance de l’intégrale, on a

∫ e

1
x2 ln(x)n dx ⩽

∫ e

1

xn+2

en
dx soit In ⩽

∫ e

1

xn+2

en
dx

Or ∫ e

1

xn+2

en
dx =

[
xn+3

(n+ 3) en

]e
1

=
en+3 − 1

(n+ 3) en
=

e 3 − e−n

n+ 3

Finalement, on a bien 0 ⩽ In ⩽
e 3 − e−n

n+ 3
.

3. On a lim
n→+∞

e−n = 0 donc lim
n→+∞

(e 3 − e−n) = e 3. Comme de plus lim
n→+∞

(n+3) = +∞, on conclut que

lim
n→+∞

e 3 − e−n

n+ 3
= 0 . D’après le théorème des gendarmes,

la suite (In)n∈N est convergente de limite 0

Partie D : vitesse de convergence de (In)n∈N

1. Soit n ∈ N. On a In+1 =

∫ e

1
x2 ln(x)n+1 dx. Posons u′(x) = x2 et v(x) = ln(x)n+1. Alors u(x) =

x3

3

et v′(x) =
(n+ 1) ln(x)n

x
. Les fonctions u et v sont de classe C1 sur l’intervalle [1, e ] donc on peut

intégrer par parties sur cet intervalle et on a

In+1 =

[
x3

3
ln(x)n+1

]e
1

−
∫ e

1

(n+ 1)x2 ln(x)n

3
dx

d’où In+1 =
e 3

3
− n+ 1

3
In (en sortant le n+ 1 de l’intégrale).

2. On isole nIn dans la relation de récurrence précédente. On a
n+ 1

3
In =

e 3

3
− In+1 donc

n

3
In =

e 3

3
− In+1 − In

3
d’où, en multipliant par 3 : nIn = e 3 − 3In+1 − In. Or on sait d’après la partie

précédente que lim
n→+∞

In = 0 donc on a aussi lim
n→+∞

In+1 = 0 d’où lim
n→+∞

nIn = e 3 .
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TD09 – Primitives

Exercice 15:

1. La fonction fα est définie sur R qui est symétrique par rapport à 0 (pour tout t ∈ R, on a −t ∈ R).
De plus fα(−t) = −te−α |−t| = −te−α|t| = −fα(t). On en conclut donc que fα est impaire .

2. ⋆ Supposons dans un premier temps que x ⩾ 0. Dans ce cas, pour tout t ∈ [0, x], on a fα(t) =

te−αt. Nous allons utiliser une intégration par parties en posant u′(t) = e−αt et u(t) =
−1

α
e−αt

ainsi que v(t) = t et v′(t) = 1. Les fonctions u et v étant bien de classe C1 sur R+, on obtient :

x∫
0

fα(t)dt =

[
−t

α
e−αt

]x
0

+

x∫
0

1

α
e−αt dt =

x∫
0

fα(t) dt =
−x

α
e−αx +

[
−1

α2
e−αt

]x
0

c’est-à -dire
x∫

0

fα(t) dt =
−x

α
e−αx +

−1

α2
e−αx +

1

α2

⋆ Supposons dans un second temps que x < 0. Dans ce cas, pour tout t ∈ [x, 0], on a

fα(t) = teαt. Nous allons utiliser une intégration par parties en posant u′(t) = eαt et u(t) =
1

α
eαt

ainsi que v(t) = t et v′(t) = 1. Les fonctions u et v sont bien de classe C1 sur R− et on a

x∫
0

fα(t) dt =

[
t

α
eαt

]x
0

−
x∫

0

1

α
eαt dt =

x∫
0

fα(t) dt =
x

α
eαx −

[
1

α2
eαt

]x
0

c’est-à -dire
x∫

0

fα(t) dt =
x

α
eαx − 1

α2
eαx +

1

α2

3. La primitive de la fonction fα s’annulant en 0 est la fonction Fα définie sur R par

∀x ∈ R, Fα(x) =

x∫
0

fα(t) dt

Or pour x ⩾ 0, on a
|x|
α
e−α|x| +

1

α2
− e−α|x|

α2
=

−x

α
e−αx +

−1

α2
e−αx +

1

α2

De plus pour x ⩽ 0, on a

|x|
α
e−α|x| +

1

α2
− e−α|x|

α2
=

x

α
eαx +

−1

α2
eαx +

1

α2

Finalement, pour tout nombre réel x, nous obtenons

Fα(x) = −|x|
α

e−α|x| +
1

α2
− e−α|x|

α2

4. On cherche à calculer lim
x→+∞

Fα(x) = lim
x→+∞

(
−x

α
e−αx+

−1

α2
e−αx+

1

α2

)
. Or lim

x→+∞
e−αx = 0 car α > 0.

De plus, lim
X→−∞

XeX = 0 par croissances comparées. On en déduit donc que

lim
x→+∞

Fα(x) =
1

α2

5. On a

x∫
0

fα(t) dt = Fα(x)−Fα(0) = Fα(x). Or d’après la question précédente, on a lim
x→+∞

Fα(x) =
1

α2
.

Par unicité de la limite, on a donc
1

α2
= 1 soit α = 1 puisque α > 0.
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