
TD11 suites usuelles

TD11 – Correction
Je m’échauffe avec les compétences de base !

Exercice 1:

1. La suite (un)n∈N est une suite arithmétique de raison r =
3

2
et de premier terme u0 = 2. Donc, pour

tout n ∈ N, on a un = u0 + nr = 2 +
3n

2
.

2. La suite (un)n∈N est une suite arithmétique de raison r = −3 et on sait que u1 =
√
5. Donc, pour tout

n ∈ N, on a un = u1 + (n− 1)r =
√
5− 3(n− 1) = 3 +

√
5− 3n.

3. La suite (vn)n∈N est une suite géométrique de raison q = 1
10 et de premier terme v0 = −7. Donc, pour

tout n ∈ N, on a vn = v0 × qn = −7× ( 1
10)

n.

4. La suite (bn)n∈N est une suite géométrique de raison q =
3

7
et de premier terme b0 = 6. Donc, pour

tout n ∈ N, on a bn = b0 × qn = 6

(
3

7

)n

.

5. La suite (un)n≥2 est une suite géométrique de raison q = 1
2 et on sait que u2 = 1. On a donc, pour

tout n ∈ N, un = u2 × qn−2 = 1×
(
1

2

)n−2

.

6. La suite (zn)n∈N est une suite géométrique de raison (-1) et de premier terme z0 = −3. Pour tout
n ∈ N, on a donc zn = −3× (−1)n.

Exercice 2:

1. A =
500∑
k=1

k = 125 250 (somme des termes consécutifs d’une suite arithmétique de raison 1 et de premier

terme 1)

2. B =
72∑
k=0

6 + 2k = 5 694 (somme des termes consécutifs d’une suite arithmétique de raison 2 et de

premier terme 6)

3. C =
399∑
k=0

8 + 5k = 402 200 (somme des termes consécutifs d’une suite arithmétique de raison 5 et de

premier terme 8)

4. D =
10∑
k=0

5 × 2k = 10 235 (somme des consécutifs termes d’une suite géométrique de raison 2 et de

premier terme 5)

5. E =
6∑

k=0

22(23)k = 1 198 372 (somme des consécutifs termes d’une suite géométrique de raison 23 et

de premier terme 22)

6. F =

{
n si x = 1

x× 1−xn

1−x si x ̸= 1
(somme des termes consécutifs d’une suite géométrique de raison x et de

premier terme x)

Exercice 3:
Ce sont des suites arithmético-géométriques, on applique la méthode vue en cours.

1. Trouvons L ∈ R tel que L = 1
2L+ 1. On obtient L = 2.

Posons ∀n ∈ N, vn = un − L.

On a ∀n ∈ N,
{

un+1 = 1
2un + 1

L = 1
2L+ 1

Par soustraction membre à membre on obtient ∀n ∈ N, vn+1 =
1
2vn.

Ainsi (vn) est une suite géométrique de raison 1
2 de premier terme v0 = −2.

On en déduit ∀n ∈ N, vn = −2× (12)
n

Puis ∀n ∈ N, un = 2 + (−2)× (12)
n
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2. ∀n ∈ N, bn = 3
2(−1)

n + 5
2

3. ∀n ∈ N, an = 1
3 −

4
3 × (−2)n

Exercice 4:
Il s’agit de suite récurrentes linéaires d’ordre 2. On étudie donc l’équation caractéristique pour trouver

la forme du terme général puis on utilise les premiers termes pour calculer les constantes.

1. L’équation caractéristique est r2 − 2r + 1 = 0⇔ (r − 1)2 = 0⇔ r = 1.

On a une solution double donc ∃(A,B) ∈ R2, ∀n ∈ N, un = (A+Bn)× 1n = A+Bn

Or

{
u0 = 1
u1 = −1 ⇔

{
A = 1
A+B = −1 ⇔

{
A = 1
B = −2

Ainsi ∀n ∈ N, un = 1− 2n.

2. ∀n ∈ N, vn = 8×(−4)n+6×3n

7

3. ∀n ∈ N, an = (−1)n+1 + 5n−1

4. ∀n ∈ N, bn = 2n− 3

5. ∀n ∈ N, un = (−5
2 + 5

2
√
2
)× (

√
2)n + (−5

2 −
5

2
√
2
)× (−

√
2)n

6. ∀n ∈ N, un =
√
2 sin(nπ4 )

7. ∀n ∈ N, bn = cos(nπ3 )

8. ∀n ∈ N, zn = (
√
3 cos(nπ6 )− 5

2 sin(
nπ
6 ))× 2n

Exercice 5:

1. Notons un la quantité de carbone 14 restante après n années.

u0 est donc la quantité de carbone 14 initiale au moment du décès.

∀n ∈ N, un+1 = un − 0, 000121un = 0, 999879un

(un) est donc une suite géométrique de raison 0, 999879 et de premier terme u0.

On en déduit ∀n ∈ N, un = u0 × (0, 999879)n.

Si un os contient une quantité u0
2 de carbone 14, déterminons son âge approximatif en résolvant

l’équation :

un = u0
2 ⇔ (0, 999879)n = 1

2 ⇔ n ln(0, 999879) = ln(0, 5) (stricte croissance du logarithme sur R∗
+)

On obtient n =
ln(0, 5)

ln(0, 999879)
≈ 5728 ans (appelé demi vie du carbone 14).

2. Notons pn la proportion de lapins blancs à la nième générations.

On a p0 =
1
4 .

∀n ∈ N, pn+1 = (1−α)pn + β(1− pn) (proportion de lapins d’allèle A qui ne mutent pas + proportion
de lapins d’allèle a qui mutent).

∀n ∈ N, pn+1 = (1− α− β)pn + β = (1− 1
5 −

1
10)pn + 1

10 = 7
10pn + 1

10

On reconnâıt une suite arithmético géométrique dont on détermine le terme général.

On obtient ∀n ∈ N, pn = 1
3 −

1
12 × ( 7

10)
n

Comme | 710 | < 1, on a lim
n→∞

pn = 1
3 .

A long terme, on devrait donc observer environ un tiers de lapins blancs.

3. Notons un le prix du nième mètre creusé. On a u1 = 20 et ∀n ∈ N, un+1 = 1, 1un.

(un) est une suite géométrique de raison 1, 1 de premier terme u1 = 20.

Ainsi ∀n ∈ N∗, un = 20× (1, 1)n−1

Le prix d’un forage de 80 m correspond à
80∑
k=1

uk.

Or
80∑
k=1

uk =
80∑
k=1

20× (1, 1)k−1 =
79∑
k=0

20× (1, 1)k = 20× 1− (1, 1)80

1− 1, 1
≈ 409 480, 04e.

4. Au début, rien n’est hachuré donc u0 = 0. À chaque étape, on colorie (1/9)ème de la partie qui
n’a pas été hachuré à l’étape d’avant. Ainsi, pour tout n ∈ N, l’aire hachurée à l’étape n + 1 est
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celle correspondant à l’étape n (soit un) plus (1/9)
ème de l’aire non encore hachurée à l’étape n (soit

1− un
9

). On en déduit donc que

un+1 = un +
1− un

9
=

1

9
+

8

9
un

Donc (un)n∈N est une suite arithmético-géométrique.

On détermine la constante L telle que L = 1
9 + 8

9L soit L = 1

On montre que la suite (un − 1)n∈N est géométrique de raison 8
9 .

Pour tout n ∈ N, on a donc un − 1 = (u0 − 1)×
(
8

9

)n

et donc

un = 1−
(
8

9

)n

Comme
8

9
∈]− 1, 1[, on sait que lim

n→+∞

(
8

9

)n

= 0 et donc la suite (un)n∈N est convergente de limite 1.

Je me perfectionne !

Exercice 6:

1. Rappelons que si β > 0, la fonction puissance x 7−→ xβ est définie par xβ = eβ lnx et donc le domaine
de définition de cette fonction est R∗

+. Il faut donc vérifier que pour tout n ∈ N, un > 0 pour que la
suite soit bien définie. Pour tout n ∈ N, on note Pn la proposition : ≪ un est bien défini et un > 0 ≫.

⋆ Initialisation : montrons que P0 est vraie. On sait que u0 > 0 donc la proposition P0 est vraie.

⋆ Hérédité : soit n ∈ N tel que la proposition Pn soit vraie. Montrons que la proposition Pn+1

est vraie. On sait que un est bien défini et est strictement positif donc (un)
β est bien défini,

c’est-à-dire un+1 est bien défini et

un+1 = (un)
β = eβ ln(un) > 0

car la fonction exp est à valeurs strictement positives. Donc la proposition Pn+1 est vraie.

⋆ Conclusion : pour tout entier naturel n, la proposition Pn est vraie par principe de récurrence.

2. Soit n ∈ N. Comme α > 0 et un > 0, on a ln(un+1) = lnα+ β ln(un) .

3. Pour tout n ∈ N, on note an = lnun. On sait d’après la question 2. que (an)n∈N est une suite
arithmético-géométrique.

On détermine L tel que L = ln(α) + βL soit L = ln(α)
1−β

On montre que la suite (an − ln(α)
1−β )n∈N est géométrique de raison β.

On en déduit donc que, pour tout n ∈ N,

an −
lnα

1− β
=

(
ln(u0)−

lnα

1− β

)
βn

c’est-à-dire

∀n ∈ N, lnun =
lnα

1− β
+

(
ln(u0)−

lnα

1− β

)
βn

4. En utilisant la question 3., on obtient

∀n ∈ N, un = exp

[
lnα

1− β
+

(
ln(u0)−

lnα

1− β

)
βn

]
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Exercice 7:
Par récurrence (on ne le rédige pas, à vous de le faire) on prouve que pour tout n ∈ N, on a u2n ≥ 0

et u2n+1 ≥ 0 donc u2n + u2n+1 ≥ 0 et comme la fonction
√
· est définie sur R+, un+2 est bien défini, ce qui

justifie que la suite est bien définie. De plus, comme la fonction
√
· est à valeurs dans R+, on a un+2 ≥ 0.

Par conséquent, la suite (un)n∈N est positive. On a alors

∀n ∈ N, un+2 =
√
u2n+1 + u2n ⇐⇒ u2n+2 = u2n+1 + u2n

Ainsi, en posant vn = u2n pour tout entier naturel n, on est ramené à trouver le terme général de cette
nouvelle suite où

∀n ∈ N, vn+2 = zn+1 + zn

avec v0 = u20 = 1 et v1 = u21 = 4. Il s’agit d’une suite récurrence linéaire d’ordre deux d’équation ca-
ractéristique associée t2 − t − 1 = 0. Le discriminant vaut 5 > 0 donc cette équation admet deux racines
réelles distinctes qui sont

1 +
√
5

2
et

1−
√
5

2

Il existe donc (A,B) ∈ R2 tel que

∀n ∈ N, vn = A

(
1 +
√
5

2

)n

+B

(
1−
√
5

2

)n

On détermine ensuite A et B tel que v0 = 1 et v1 = 4. Or v0 = A+B et

v1 = A
1 +
√
5

2
+B

1−
√
5

2

Donc {
v0 = 1
v1 = 4

⇐⇒
{

A+B = 1

(A+B) + (A−B)
√
5 = 8

⇐⇒

 A+B = 1

A−B =
7√
5

⇐⇒


A =

1

2
+

7

2
√
5

B =
1

2
− 7

2
√
5

Finalement,

∀n ∈ N, un =

√(
1

2
+

7

2
√
5

)(
1 +
√
5

2

)n

+

(
1

2
− 7

2
√
5

)(
1−
√
5

2

)n

car on sait que la suite (un)n∈N est positive.

Exercice 8:

1. (un) doit vérifier la relation de récurrence :

∀n ∈ N, un+2 = un+1 + 2un + n+ 3

soit ∀n ∈ N, a(n+ 2) + b = a(n+ 1) + b+ 2(an+ b) + n+ 3⇔ (2a+ 1)n+ 2b− a+ 3 = 0

On en déduit par identification :

2a+ 1 = 0

et 2b− a+ 3 = 0

soit a = −1
2 et b = −7

4

Ainsi ∀n ∈ N, un = −1
2 n− 7

4

2. ∀n ∈ N, wn+2 = xn+2 − un+2

∀n ∈ N, wn+2 = (xn+1 + 2xn + n+ 3)− (un+1 + 2un + n+ 3)

∀n ∈ N, wn+2 = wn+1 + 2wn.

On a par ailleurs w0 = x0 − u0 =
11
4 et w1 = x1 − u1 =

13
4
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3. (wn) est une suite récurrente linéaire d’ordre 2.

On cherche son terme général en fonction de n et on obtient :

∀n ∈ N, wn = 3
4 × (−1)n + 2× 2n

On en déduit ∀n ∈ N, xn = wn + un = 3
4 × (−1)n + 2× 2n − 1

2n−
7
4 .

Exercice 9:

1. (vn) doit vérifier la relation de récurrence :

∀n ∈ N, vn+2 = 2vn+1 + 3vn + 2n

soit ∀n ∈ N, αrn+2 = 2αrn+1 + 3αrn + 2n

En particulier pour n = 0, on doit avoir :αr2 = 2αr + 3α+ 1

d’où α(r2 − 2r − 3) = 1

Reprenons alors la formule de récurrence générale : ∀n ∈ N, αrn+2 = 2αrn+1 + 3αrn + 2n

On peut aussi l’écrire en factorisant pas αrn :

α(r2 − 2r − 3)rn = 2n

Mais on sait que α(r2 − 2r − 3) = 1 d’où ∀n ∈ N, rn = 2n ce qui permet d’en déduire r = 2.

Puis comme α(r2 − 2r − 3) = 1, on obtient α = −1
3 .

Ainsi ∀n ∈ N, vn = −1
3 × 2n.

2. On a y0 =
4
3 et y1 =

5
3

et ∀n ∈ N, yn+2 = zn+2 − vn+2 = (2zn+1 + 3zn + 2n)− (2vn+1 + 3vn + 2n)

∀n ∈ N, yn+2 = 2yn+1 + 3yn

(yn) est une suite récurrrente linéaire d’ordre 2.

3. On obtient son terme général en fonction de n :

∀n ∈ N, yn = 7
12 × (−1)n + 3

4 × 3n

Ainsi ∀n ∈ N, zn = yn + vn = 7
12 × (−1)n + 3

4 × 3n − 1
3 × 2n

Exercice 10:

1. Si a = −3, une récurrence permet de montrer que ∀n ∈ N, un = −3 donc la suite (un) est constante.
On peut aussi utiliser que si a = −3 alors pour tout n ∈ N, un+1 = un. Donc (un)n∈N est une suite
arithmétique de raison 0, elle est donc constante.

2. De nouveau une récurrence permet de montrer que ∀n ∈ N, un ≥ 0.

3. (a) La suite (vn) est bien définie si et seulement si ∀n ∈ N, un ̸= −3, ce qui est bien le cas d’après la
question précédente.

(b) ∀n ∈ N, vn+1 =
un+1 − 1

un+1 + 3
=

2un + 3

un + 4
− 1

2un + 3

un + 4
+ 3

= 1
5

un − 1

un + 3
= 1

5vn.

Ainsi (vn) est une suite géométrique de raison 1
5 de premier terme v0 =

a− 1

a+ 3
.

On en déduit ∀n ∈ N, vn = v0 × (15)
n.

(c) D’après la question précédente,

∀n ∈ N,
un − 1

un + 3
= v0 × (15)

n ⇔ un =
3v0(

1
5)

n + 1

1− v0(
1
5)

n

Exercice 11:

1. Pour tout entier naturel n, notons Pn la proposition : ≪ un > 0 ≫. Montrons que pour tout entier
naturel n, la proposition Pn est vraie à l’aide d’un raisonnement par récurrence à deux pas.

⋆ Initialisation : on sait par hypothèse que u0 > 0 et u1 > 0 donc les propositions P0 et P1 sont
vraies.
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⋆ Hérédité : soit n ∈ N tel que les propositions Pn et Pn+1 soient vraies. Montrons que la
proposition Pn+2 est vraie. On sait que

un+2 =
2un+1un
un+1 + un

donc un+2 est le quotient de deux nombres strictement positifs par hypothèse de récurrence donc
un+2 > 0 et donc la proposition Pn+2 est vraie.

⋆ Conclusion : pour tout entier naturel n, la proposition Pn est vraie par principe de récurrence
à deux pas.

2. Soit n ∈ N. On a

un+2 =
2un+1un
un+1 + un

⇐⇒ un+2(un+1 + un) = 2un+1un

⇐⇒ un+2(un+1 + un)

unun+1un+2
=

2un+1un
unun+1un+2

⇐⇒ 1

un
+

1

un+1
=

2

un+2

Ainsi, en posant zn =
1

un
, on obtient

2zn+2 = zn+1 + zn

Donc la suite (zn)n∈N est une suite récurrente linéaire d’ordre deux dont l’équation caractéristique
associée est 2r2 − r − 1 = 0. Son discriminant vaut 1 > 0 donc l’équation a deux racines réelles

distinctes qui sont 1 et −1

2
. Il existe donc (A,B) ∈ R2 tel que

∀n ∈ N, zn = A+B

(
− 1

2

)n

et donc

∀n ∈ N, un =
1

zn
=

1

A+B
(
− 1

2

)n
Maintenant que je suis fort(e), voici des extraits de DS sur ce thème !

Exercice 12:

1. On peut utiliser une fonction récursive ou une boucle for. Avec une fonction récursive, cela donne :

from math import *

def suite(n) :

if (n==0) :

return 1

else :

return suite(n-1)/sqrt(4-suite(n-1)**2)

Avec une boucle for, cela s’écrit :

from math import *

def suite(n) :

u=1

for k in range(n) :

u=u/sqrt(4-u**2)

return u

2. On a v0 = u20 = 1 . Soit n ∈ N. En élevant au carré la relation de récurrence vérifiée par notre suite,

il vient u2n+1 =
u2n

4− u2n
, c’est-à-dire vn+1 =

vn
4− vn
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3. (a) La suite (zn)n∈N est bien définie car comme pour tout n ∈ N, on a 0 < un et donc en particulier
un ̸= 0. Par conséquent, vn = u2n ̸= 0. Cherchons maintenant la relation de récurrence vérifiée

par la suite (zn)n∈N. Soit n ∈ N. Comme vn+1 =
vn

4− vn
, on a, en passant à l’inverse :

1

vn+1
=

4− vn
vn

=
4

vn
− 1 c’est-à-dire zn+1 = 4zn − 1

(b) On a z0 =
1

v0
= 1. La suite (zn)n∈N est une suite arithmético-géométrique. Soit ℓ ∈ R. On résout :

ℓ = 4ℓ− 1 ⇐⇒ 3ℓ = 1 ⇐⇒ ℓ =
1

3

Soit n ∈ N. On pose tn = zn − ℓ = zn −
1

3
. On a zn+1 = 4zn − 1 et ℓ = 4ℓ− 1. En soustrayant la

deuxième équation à la première, il vient zn+1− ℓ = 4zn−1− (4ℓ−1), c’est-à-dire tn+1 = 4tn. On

en déduit que la suite (tn)n∈N est une suite géométrique de premier terme t0 = z0−
1

3
= 1− 1

3
=

2

3
et de raison 4. On trouve donc que

∀n ∈ N, zn =
1

3
+

2

3
× 4n

4. Déterminons l’expression de un en fonction de n. Soit n ∈ N. On sait que zn =
1

vn
et que zn =

1

3
+
2

3
×4n.

Donc

vn =
1

zn
=

1
1
3 + 2

3 × 4n
=

3

1 + 2× 4n

Ensuite, on a vn = u2n donc un = +−
√
vn. Or on sait que un > 0 donc on a nécessairement un = +

√
vn.

Finalement,

∀n ∈ N, un =

√
3√

1 + 2× 4n

Exercice 13:

1. Calculons x0 et x1. On a x0 = u1 − u0 = 1− 0 = 1 et x1 = u2 − u1 = −1− 1 = −2 .

2. Soit n ∈ N. On sait que un+3 = un+2+un+1−un donc un+3−un+2 = un+1−un. Or xn+2 = un+3−un+2

et xn = un+1 − un. On a donc bien :

∀n ∈ N, xn+2 = xn

3. Déterminons l’expression de xn en fonction de n. La suite (xn)n∈N est une suite récurrente linéaire
d’ordre deux (à coefficients constants). L’équation caractéristique associée est r2 = 1. Ses racines sont
1 et −1. On sait alors qu’il existe (A,B) ∈ R2 tel que pour tout entier naturel n, on ait

xn = A× 1n +B(−1)n = A+B(−1)n

On détermine les valeurs de A et B en utilisant les conditions initiales : x0 = 1 et x1 = −2. On résout :{
x0 = 1
x1 = −2

⇐⇒
{

A + B = 1 L1

A − B = −2 L2

⇐⇒
{

A + B = 1 L1

2B = 3 L2 ← L1 − L2

⇐⇒ (A,B) = (−1
2 ,

3
2)

Finalement, ∀n ∈ N, xn =
−1 + 3(−1)n

2
.
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4. (a) Soit n ∈ N∗. Pour tout k ∈ J0, n− 1K, on a xk = uk+1 − uk. En utilisant la linéarité de la somme,
le changement d’indice ℓ = k + 1 et la relation de Chasles, on a

n−1∑
k=0

(uk+1 − uk) =
n−1∑
k=0

uk+1 −
n−1∑
k=0

uk =
n∑

ℓ=1

uℓ −
n−1∑
k=0

uk

=
n−1∑
k=1

uk + un −
(
u0 +

n−1∑
k=1

uk

)
= un

car u0 = 0. Finalement, on a un =
n−1∑
k=0

xk .

(b) On utilise une boucle for :

def somme(n) :

S=0

for k in range(n) :

S=S+(-1+3*(-1)**k)/2

return S

5. Soit n ∈ N∗. Déterminons l’expression de un en fonction de n. D’après la question 3., on sait que pour

tout k ∈ J0, n− 1K, on a xk =
−1 + 3(−1)k

2
. En utilisant maintenant la question 4. (a), il vient

un =
n−1∑
k=0

xk =
n−1∑
k=0

−1 + 3(−1)k

2

= −1

2

n−1∑
k=0

1 +
3

2

n−1∑
k=0

(−1)k (par linéarité de la somme)

= −n

2
+

3

2
× 1− (−1)n

1− (−1)
(somme des termes consécutifs d’une suite géométrique de raison

−1 ̸= 1)

= −n

2
+

3

4

(
1− (−1)n

)
Remarquons que cette relation est valable pour n = 0. On en conclut donc que :

∀n ∈ N, un = −n

2
+

3

4

(
1 + (−1)n+1

)
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