
TD12 Applications

TD12 – Correction
Je m’échauffe avec les compétences de base !

Exercice 1:

1. c([0; 2]) = [0, 4]

c([−1; 0]) = [0, 1]

c([−2; 2]) = [0, 4]

c([−1; 3]) = [0, 9]

Si a < b ≤ 0 alors c([a, b]) = [b2, a2]

Si 0 ≤ a < b alors c([a, b]) = [a2, b2]

Si a ≤ 0 ≤ b alors c([a, b]) = [0,max(a2, b2)]

2. Dans chacun des cas suivants, réaliser le tableau de variations de la fonction étudiée puis déterminer
les images des ensembles demandés. On utilise à chaque fois la continuité de la fonction étudiée et le
théorème des valeurs intermédiaires.

f([0; 1]) = [1, 2], f([0; 2]) = [1, 2], f([0; 3]) = [1, 5].

3. g([−1; 1]) = [−2, 2], g([0; 2]) = [−2, 2], g([1; 3]) = [−2, 2].

4. h(R \ {−1}) = R \ {1}.

Exercice 2:

• La fonction sin est croissante sur
[
−π

4 ,
π
2

]
et est continue sur cette intervalle (car elle est continue sur R).

Or sin
(
−π

4

)
= − sin

(
π
4

)
= −

√
2
2 et sin

(
π
2

)
= 1. Donc, d’après le théorème des valeurs intermédiaires :

sin

([
− π

4
,
π

2

])
=

{
sin(x) ; −π

4
≤ x ≤ π

2

}
=

[
−

√
2

2
, 1

]
• La fonction tan est croissante sur

[
−π

4 ,
π
2

[
et est continue sur cette intervalle. Or tan

(
−π

4

)
= − tan

(
π
4

)
=

−1 et lim
x→π

2

tan(x) = +∞. Donc, d’après le théorème des valeurs intermédiaires : tan

([
− π

4
,
π

2

[)
={

tan(x) ; −π

4
≤ x <

π

2

}
= [−1,+∞[

• La fonction cos est décroissante sur
[
π
4 ,

5π
6

]
et est continue sur cette intervalle (car elle est continue

sur R). Or cos
(
π
4

)
=

√
2
2 et cos

(
5π
6

)
= cos

(
π − π

6

)
= − cos

(
π
6

)
= −

√
3
2 . Donc, d’après le théorème des

valeurs intermédiaires : cos

([
π

4
,
5π

6

])
=

{
cos(x) ;

π

4
≤ x ≤ 5π

6

}
=

[
−

√
3

2
,

√
2

2

]
Exercice 3:

Pour montrer qu’une application f : E → F est injective on montre que :

∀a, b ∈ E, f(a) = f(b) ⇒ a = b.

On peut aussi se servir de la stricte monotonie de la fonction si la fonction est définie sur un intervalle de
R et à valeurs réelles.

Pour montrer qu’une application f : E → F n’est pas injective, on trouve :
a et b distincts dans E tels que f(a) = f(b).

1. f :

{
R → R
x 7→ x2

f n’est pas injective car on a f(1) = f(−1)

2. g :

{
R+ → R
x 7→ x2

Méthode 1 : La fonction g est strictement croissante sur R+ donc elle est injective (puisque ∀(a, b) ∈
R+, g(a) = g(b) ⇔ a = b, théorème vu au chapitre 4).
Méthode 2 : Soient (a, b) ∈ R2

+ tels que g(a) = g(b),

Or
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g(a) = g(b) ⇔ a2 = b2

⇔ a2 − b2 = 0
⇔ (a− b)(a+ b) = 0
⇔ a = b ou a = −b (impossible car a et b sont tous les deux positifs)

Ainsi ∀(a, b) ∈ R2
+, g(a) = g(b) ⇒ a = b donc g est injective.

3. h :

{
R → R
x 7→ 2x− 3

Méthode 1 : La fonction h est strictement croissante sur R (fonction affine de coefficient directeur égal
à 2) donc elle est injective (puisque ∀(a, b) ∈ R, h(a) = h(b) ⇔ a = b, théorème vu au chapitre 4).
Méthode 2 : Soient (a, b) ∈ R2 tels que h(a) = h(b),

Or
h(a) = h(b) ⇔ 2a− 3 = 2b− 3

⇔ 2a = 2b
⇔ a = b

Ainsi ∀(a, b) ∈ R2, h(a) = h(b) ⇒ a = b donc h est injective.

4. j :

{
R → R
x 7→ |x|

j n’est pas injective car j(4) = j(−4).

5. k :

{
R∗
+ → R

x 7→ ln(x2)− ln(3x)

Soient (a, b) ∈ (R∗
+)

2 tels que k(a) = k(b),

Or
k(a) = k(b) ⇔ ln(a2)− ln(3a) = ln(b2)− ln(3b)

⇔ ln(a3 ) = ln( b3)

⇔ a
3 = b

3
car l’exponentielle est strictement croissante sur R

⇔ a = b

Ainsi ∀(a, b) ∈ (R∗
+)

2, k(a) = k(b) ⇒ a = b donc k est injective.

6. l :

{
[0, π2 ] → [0, 1]

x 7→
√
sin(x)

Soient (a, b) ∈ [0, π2 ]
2 tels que l(a) = l(b),

Or
l(a) = l(b) ⇔

√
sin(a) =

√
sin(b)

⇔ sin(a) = sin(b)
car la fonction carrée est strictement croissante sur R+

avec
√

sin(a) ∈ R+ et
√

sin(b) ∈ R+

⇔ a ≡ b[2π] ou a ≡ π − b[2π]
⇒ a = b car (a, b) ∈ [0, π2 ]

2

Ainsi ∀(a, b) ∈ [0, π2 ]
2, l(a) = l(b) ⇒ a = b donc l est injective.

7. m :

{
[0, π] → [0, 1]
x 7→ | cos(x)|

m n’est pas injective car l(π6 ) = l(5π6 )

8. n :

{
Z → Z
x 7→ 2x

Soient (a, b) ∈ Z2 tels que n(a) = n(b),

Or
n(a) = n(b) ⇔ 2a = 2b

⇔ a = b

Ainsi ∀(a, b) ∈ Z2, n(a) = n(b) ⇒ a = b donc n est injective.

9. p :

{
R → Z
x 7→ ⌊x⌋

p n’est pas injective car p(1) = p(1, 2).
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Exercice 4:
Pour montrer que f : E → F est surjective, on prend y ∈ F et on résout l’équation f(x) = y.

Si cette équation admet au moins une solution dans E, alors f est surjective.
On peut aussi, si la fonction est définie sur une partie de R à valeurs réelles, dresser le tableau de variation,
déterminer f(E) et vérifier que f(E) = F .

Pour montrer que f nest pas surjective, il suffit de trouver un élement de F qui n’a pas d’antécédent
dans E.

1. f :

{
R → R
x 7→ x2

f n’est pas surjective car −1 n’a pas d’antécédent par f dans R.

2. g :

{
R → R
x 7→ x3 + 6x2 + 9x+ 5

Ici résoudre l’équation g(x) = y n’est pas possible. Mais on doit seulement prouver (si g est surjec-
tive) que cette équation admet pour tout y ∈ R au moins une solution. On a lim

x→+∞
g(x) = +∞ et

lim
x→−∞

g(x) = −∞ (en factorisant par x3). Or g est continue sur R donc le théorème des valeurs in-

termédiaires donne g(R) = R. Donc chaque élément de R admet au moins un antécédent par g. Donc
g est surjective.

On aurait aussi pu dresser le tableau de variation qui nous permettra de dire aussi si la fonction est
injective. La fonction g est un polynôme et est donc dérivable sur R et pour tout x ∈ R :

f ′(x) = 3x2 + 12x+ 9 = 3(x2 + 4x+ 3) = 3(x+ 1)(x+ 3)

La dérivée est un polynôme du second degré dont les deux racines sont −1 et −3 et dont le coefficient
devant x2 est égal à 3 > 0. Donc :

x

f ′

f

−∞ −3 −1 +∞

+ 0 − 0 +

−∞−∞

55

11

+∞+∞

Notons que le tableau de variation nous permet donc de dire que g est (bien) surjective mais n’est par
contre pas injective puisque tous les réels appartenant [1, 5] ont au moins 3 antécédents, en utilisant
le théorème des valeurs intermédiaires (et en fait exactement 3 mais pour le prouver il faut faire appel
au théorème de la bijection sur chacun des intervalles, la rédaction serait plus longue).

3. h :

{
R → R
x 7→ 2x− 3

Soit y ∈ R.
h(x) = y ⇔ 2x− 3 = y

⇔ x = y+3
2 ∈ R

(on vérifie qu’au moins une solution est dans l’ensemble de départ)

Ainsi ∀y ∈ R,∃x ∈ R, h(x) = y donc h est surjective. On a même prouvé ici que x était unique et donc
prouvé que h était bijective, sa fonction réciproque étant y 7→ y+3

2 définie de R dans R.

4. j :

{
R → R+

x 7→ |x|
Soit y ∈ R+.

j(x) = y ⇔ |x| = y
⇔ x = y ∈ R ou x = −y ∈ R

(on vérifie qu’au moins une solution est dans l’ensemble de départ)

Ainsi ∀y ∈ R+, ∃x ∈ R, j(x) = y donc j est surjective.

On aurait pu remarquer directement que si y ∈ R+ alors y ∈ R et |y| = y. Donc pour tout y ∈ R+ il
existe x ∈ R tel que j(x) = y (avec x = y notamment).
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5. k :

{
R → R+

x 7→
√
ex

k n’est pas surjective car 0 n’a pas d’antécédent par k dans R.

6. l :

{
Z → Z
x 7→ 2x

l n’est pas surjective car 3 n’a pas d’antécédent par l dans Z.

7. m :

{
R → Z
x 7→ ⌊x⌋

Soit y ∈ Z.
m(x) = y ⇔ ⌊x⌋ = y

⇔ x ∈ [y, y + 1[⊂ R
(on vérifie qu’au moins une solution est dans l’ensemble de départ)

Ainsi ∀y ∈ Z,∃x ∈ R (il y en a en fait une infinité) tel que m(x) = y donc m est surjective.

Là encore on aurait pu remarquer que : Z ⊂ R et que pour y ∈ Z, ⌊y⌋ = y. Donc que tout y ∈ Z admet
au moins un antécédent par m.

8. p :

{
R → [−2, 2]
x 7→ cos(x) + sin(x)

Soit y ∈ [−2, 2]. Résolvons sur R l’équation p(x) = y

Transformons l’expression cos(x) + sin(x) en r cos(x+ β).

Posons z = 1 + i =
√
2ei

π
4

D’où cos(x) + sin(x) =
√
2( 1√

2
cos(x) + 1√

2
sinx)

cos(x) + sin(x) =
√
2(cos(π4 ) cos(x) + sin(π4 ) sin(x)) =

√
2 cos(x− π

4 )

Finalement cos(x) + sin(x) = y ⇔ cos(x− π
4 ) =

y√
2

or y√
2
∈ [−

√
2,
√
2] tandis qu’un cosinus est compris entre -1 et 1.

Ainsi par exemple y = 2 n’aura pas d’antécédent dans R par p.

p n’est donc pas surjective.

Exercice 5:

1. Df = R∗.

2. f est dérivable sur R∗ avec f ′(x) = −1
x2 − 3x2. On obtient le tableau de variations suivant :

x

f ′(x)

f(x)

−∞ 0 +∞

− −

+∞+∞

−∞

+∞

−∞−∞

Ainsi f(Df ) = R
3. En utilisant le théorème de la bijection sur R∗

− et sur R∗
+, on peut montrer par exemple que 0 admet

deux antécédents par f dans R∗ (l’un dans R∗
−, l’autre dans R∗

+) donc f n’est pas injective.

4. Dg = R∗
+.

g est dérivable sur R∗
+ et g′x) = 1

x − 1 = 1−x
x .

On obtient le tableau de variations suivant :

x

g′(x)

g(x)

0 1 +∞

+ 0 −

−∞

−1−1

−∞−∞
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Ainsi g(Dg) =]−∞,−1].
En utilisant deux fois le théorème de la bijection sur ]0, 1[ et sur ]1,+∞[, on peut montrer par exemple

que −2 admet deux antécédents par g sur R∗
+ donc g n’est pas injective.

Exercice 6:

1. f :

{
[0; +∞[→ [−5,+∞[
x 7→ x2 − 5

1ère méthode

f est continue et strictement croissante de [0,+∞[ sur [−5,+∞[ donc elle est bijective de [0,+∞[ dans
[−5,+∞[.

2ème méthode : plus adaptée ici car donne directement la réciproque

Soit y ∈ [−5,+∞[.

f(x) = y ⇔ x2 − 5 = y
⇔ x2 = y + 5 ≥ 0
⇔ x =

√
y + 5 ∈ R+ ou x = −

√
y + 5 /∈ R+

Ainsi ∀y ∈ [−5,+∞[, ∃!x ∈ R+ tel que f(x) = y donc f est bijective.

Elle admet donc pour application réciproque f−1 :

{
[−5,+∞[→ R+

y 7→
√
y + 5

3ème méthode, plus difficile

On peut remarquer que f = g ◦ h avec g :

{
[0,+∞[→ [−5,+∞[

x 7→ x− 5
et h :

{
[0,+∞[→ [0,+∞[

x 7→ x2
qui sont

toutes les deux bijectives, de réciproque : g−1 :

{
[−5,+∞[→ [0,+∞[

x 7→ x+ 5
et h−1 :

{
[0,+∞[→ [0,+∞[

x 7→
√
x

.

Par composition f est bijective et pour tout y ∈ [−5,+∞[,

f−1(y) = h−1(g−1(y)) =
√

y + 5

2. g :

{
R → R
x 7→ sin(x) + 2x

Faire une étude des variations de g et montrer que g est continue et strictement croissante de R dans
R donc bijective de R dans R.
La résolution d’équation ici n’est pas possible. On ne peut pas exprimer la fonction réciproque même
si elle existe.

3. h :

{
]6,+∞[→ R∗

+

x 7→ 1
x−6

1ère méthode Faire une étude des variations de h et montrer que h est continue et strictement
décroissante de ]6,+∞[ dans R∗

+ donc bijective de ]6,+∞[ dans R∗
+.

2ème méthode : plus adaptée car donne la réciproque

Soit y ∈ R∗
+.

h(x) = y ⇔ 1
x−6 = y

⇔ x− 6 = 1
y

car la fonction inverse est strictement décroissante sur R∗
+

avec 1
x−6 ∈ R∗

+ et y ∈ R∗
+

⇔ x = 6 + 1
y ∈]6,+∞[

Ainsi ∀y ∈ R∗
+, ∃!x ∈]6,+∞[ tel que h(x) = y donc h est bijective.

Elle admet donc pour application réciproque h−1 :

{
R∗
+ →]6,+∞[

y 7→ 6 + 1
y

3ème méthode, plus difficile

On peut remarquer que h = h1 ◦ h2 avec h2 :

{
]6,+∞[→]0,+∞[

x 7→ x− 6
et h1 :

]0,+∞[→]0,+∞[

x 7→ 1

x

qui sont

toutes les deux bijectives, de réciproque : h−1
2 :

{
]0,+∞[→ [6,+∞[

x 7→ x+ 6
et h−1

1 :

]0,+∞[→]0,+∞[

x 7→ 1

x

. Par
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composition f est bijective et pour tout y ∈]0,+∞[,

h−1(y) = h−1
2 (h−1

1 (y)) =
1

y
+ 6

Exercice 7:

On considère l’application f :

 R+ →]− 1; 1]

x 7→ 1− x2

1 + x2

Soit y ∈]− 1, 1]. Résolvons sur R+ l’équation f(x) = y.

f(x) = y ⇔ 1−x2

1+x2 = y

⇔ x2 = 1−y
y+1 car y ̸= −1

⇔ x =
√

1−y
y+1 ∈ R+ ou x = −

√
1−y
y+1 /∈ R+

car 1−y
y+1 ≥ 0

Ainsi ∀y ∈]− 1, 1],∃!x ∈ R+ tel que f(x) = y donc f est bijective.

Elle admet donc pour application réciproque : f−1 :

{
]− 1, 1] → R+

y 7→
√

1−y
y+1

Exercice 8:
Soit f l’application définie par x 7→ 1−x

x+2

1. Df = R \ {−2}.
2. f est dérivable sur son domaine de définition de dérivée f ′(x) = −3

(x+2)2
.

Après étude des limites, on en déduit que f est strictement décroissante de ]−∞,−2[ sur ]−∞,−1[
et strictement décroissante de ]− 2,+∞[ dans ]− 1,+∞[. La fonction f étant continue sur ]−∞,−2[
et sur ]− 2,+∞[, le théorème des valeurs intermédiaires implique que f(Df ) = R \ {−1}.

3. Soit (a, b) ∈ (Df )
2 tels que f(a) = f(b)

Or
f(a) = f(b) ⇔ 1−a

a+2 = 1−b
b+2

⇔ (1− a)(b+ 2) = (1− b)(a+ 2)
⇔ 3a = 3b
⇔ a = b

Ainsi ∀(a, b) ∈ (Df )
2, f(a) = f(b) ⇒ a = b donc f est injective.

4. L’ensemble d’arrivée de f étant f(Df ) la fonction est surjective par définition de f(Df ).

5. f est injective et surjective donc bijective et admet donc une réciproque que l’on calcule :

Soit y ∈ R \ {−1}. Résolvons sur R \ {−2} l’équation f(x) = y.

f(x) = y ⇔ 1−x
x+2 = y

⇔ x = 1−2y
y+1 car y ̸= −1

Par ailleurs cette solution est bien différente de −2 car 1−2y
y+1 = −2 ⇔ 1 = −2 IMPOSSIBLE !

Ainsi ∀y ∈ R \ {−1},∃!x ∈ R \ {−2} tel que f(x) = y donc f est surjective.

Donc :

f−1 :

{
R \ {−1} → R \ {−2}
y 7→ 1−2y

y+1

Exercice 9:
Commençons par remarquer que B =

{
−3, 1,

√
2
}
.

1. 1A :


R → R

x 7→

{
1 si x ∈ Z
0 si x /∈ Z

1B :


R → R

x 7→

{
1 si x ∈ {−3, 1,

√
2}

0 sinon

BCPST1, Lycée Louis Thuillier Page 6/11



TD12 Applications

2. 1A(4) = 1,1A(π) = 0,1A(−5) = 1.

3. 1B(0) = 0, 1B(1) = 1, 1B(−3) = 1, 1B(
√
2) = 1, 1B(−

√
2) = 0.

4. 1A∩B(1) = 1, 1A∩B(
√
2) = 0,1A∪B(

√
2) = 1, 1Ā(1) = 0.

5. Les antécédents de 0 par 1Ā sont les éléments de Z.

Je me perfectionne !

Exercice 10:

1. f(1 + i) = f(1− 2i) donc f n’est pas injective.

Soit y ∈ R. Résolvons sur C l’équation f(x) = y.

f(x) = y ⇔ Re(x) = y
⇔ x ∈ {y + it, t ∈ R}

Ainsi ∀y ∈ R,∃x ∈ C (il y en a une infinité !) tel que f(x) = y donc f est surjective.

Pour la surjectivité on aurait aussi pu remarquer que pour tout y ∈ R, y ∈ C et Re(y) = y. Donc un
antécédent de y par f est y. Donc tout réel admet un antécédent par f donc f est surjective.

2. On peut montrer directement que g est bijective.

Méthode 1

Soit y ∈ C. Résolvons sur C l’équation g(x) = y.

g(x) = y ⇔ x̄ = y
⇔ x̄ = α+ iβ en notant y = α+ iβ

⇔ x = α+ iβ = α− iβ ∈ C
Ainsi ∀y ∈ C, ∃!x ∈ C tel que g(x) = y donc g est bijective.

Méthode 2

On sait que pour tout z ∈ C, (z) = z. Donc ∀z ∈ C, (g ◦ g)(z) = z. Donc g ◦ g = IdC . Ce qui signifie
que g admet une fonction réciproque (ici c’est un cas particulier g−1 = g) et donc que g est bijective.

3. Cette fonction n’est pas injective puisque h(1, 0) = h(−1, 0). D’autre part elle n’est pas surjective
puisque pour tout (x, y) ∈ R2, x2 + 2y2 ≥ 0 (−1 n’a donc pas d’antécédent par h).

4. Cette fonction n’est pas injective puisque h(1, 0) = h(−1, 0).
Soit w ∈ R+. Alors h1(

√
w, 0) = (

√
w)2 +2× 02 = w. Donc pour tout w ∈ R+, il existe (x, y) ∈ R2 tel

que h1(x, y) = w. Donc h1 est surjective.

5. k n’est pas injective car k(x2) = k(x2 + 1).

Soit Q ∈ E, résolvons sur E, k(P ) = Q qui est équivalent à P ′ = Q.

Comme Q est un polynôme, c’est une fonction continue sur R. Elle admet donc des primitives sur R.
Il faut prouver que ces primitives sont des polynômes. Comme Q est un polynôme il existe n ∈ N et
des coefficients réels a0, a1, a2 ... an−1 et an tel que an ̸= 0 et pour tout x ∈ R :

Q(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + anx
n

Il s’agit donc de trouver un polynôme qui, une fois dérivé, est égal à Q. Or Q est la somme de fonctions
dont on connâıt des primitives. On peut donc prendre P défini pour tout x ∈ R par :

P (x) = a0x+
a1
2
x2 +

a2
3
x3 + · · ·+ an−1

n
xn +

an
n+ 1

xn+1

Ainsi P est une primitive de Q sur R et c’est un polynôme à coefficients réels.
Donc k est surjective.

6. Montrons que l est injective :

Soient P,Q ∈ F tels que l(P ) = l(Q) alors P ′ = Q′. Donc P ′ −Q′ = 0, donc (P −Q)′ = 0. Et P −Q
est un polynôme définie et dérivable sur R de dérivée nulle. C’est donc une fonction constante sur R
(qui est bien un intervalle). Il existe donc c ∈ R tel que :

P −Q = c

P et Q sont donc égaux à une constante près.
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Mais P (0) = Q(0) = 1 d’où c = 0.

On en déduit que P = Q donc k est injective.

Montrons que l est surjective.

Soit R ∈ E, résolvons l(P ) = R qui est équivalent P ′ = R.

P est donc une primitive de R. Cette question est proche de la question précédente mais il faut cette
fois-ci choisir notre primitive P telle que P (0) = 1. Comme R est un polynôme il existe n ∈ N et des
coefficients réels a0, a1, a2 ... an−1 et an tel que an ̸= 0 et pour tout x ∈ R :

R(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 + anx
n

On a vu dans la question précédemment qu’une primitive de R sur R est (cette fois-ci on l’appelle S) :

S(x) = a0x+
a1
2
x2 +

a2
3
x3 + · · ·+ an−1

n
xn +

an
n+ 1

xn+1

Remarquons que S(0) = 0 Il suffit donc de prendre P = S + 1 qui est bien un polynôme tel que
P (0) = 1 et qui est bien une primitive de R. P est donc bien l’antécédent de R (l’unique puisque
l’application est injective)

Ainsi ∀R ∈ E,R admet un antécédent dans F par l donc l est surjective.

Finalement l est bijective.

Exercice 11:

Soit f :

 R+ → R

x 7→ ex + e−x

2
En dressant le tableau de variation de f on montre que f est continue strictement croissante de R+ dans

[1,+∞[ donc f est bijective.
Pour déterminer sa réciproque, on prend y ∈ [1,+∞[ et on résout f(x) = y.

f(x) = y ⇔ e2x−2yex+1
ex = 0

⇔ e2x − 2yex + 1 = 0 car ex > 0.
Posons X = ex et résolvons X2 − 2yX + 1 = 0
Le discriminant vaut ∆ = 4(y2 − 1).
Remarque : si y = 1 alors on a 0 comme antécédent. On étudie dans la suite le cas où y > 1, c’est à dire

un discriminant strictement positif.
On obtient deux solutions :
X = y −

√
y2 − 1 ou X = y +

√
y2 − 1

Ces deux solutions étant positives, on obtient :
x = ln(y −

√
y2 − 1) ou x = ln(y +

√
y2 − 1)

Or y −
√
y2 − 1 = 1

y+
√

y2−1
(quantité conjuguée)

mais y > 1 donc 1

y+
√

y2−1
< 1 soit ln(y −

√
y2 − 1) < 0

La seule solution dans R+ est donc x = ln(y +
√
y2 − 1).

Ainsi f−1 :

{
[1,+∞[→ R+

y 7→ ln(y +
√

y2 − 1)

Exercice 12:

1. On suppose A ⊂ B.

Soit y ∈ f(A)

Alors ∃x ∈ A, y = f(x)

mais A ⊂ B donc x ∈ B et par suite y = f(x) ∈ f(B)

Finalement f(A) ⊂ f(B) .

2. On raisonne par double inclusion.

⋆ Montrons que f(A ∪ B) ⊂ f(A) ∪ f(B). Soit y ∈ f(A ∪ B). Alors il existe x ∈ A ∪ B tel que
y = f(x). Si x ∈ A, alors y = f(x) ∈ f(A) et comme f(A) ⊂ f(A)∪ f(B), on a y ∈ f(A)∪ f(B).
Sinon, x ∈ B et donc y = f(x) ∈ f(B). Comme f(B) ⊂ f(A)∪f(B), on a y ∈ f(A)∪f(B). Dans
les deux cas, on a montré que y ∈ f(A) ∪ f(B). On a bien montré que f(A ∪B) ⊂ f(A) ∪ f(B).
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⋆ Montrons que f(A) ∪ f(B) ⊂ f(A ∪B). Soit y ∈ f(A) ∪ f(B). Si y ∈ f(A), alors il existe a ∈ A
tel que y = f(a). Or A ⊂ A ∪ B donc a ∈ A ∪ B et donc y = f(a) ∈ f(A ∪ B). Sinon, y ∈ f(B)
et donc il existe b ∈ B tel que y = f(b). Or B ⊂ A ∪B donc y = f(b) ∈ f(A ∪B). Dans les deux
cas, y ∈ f(A ∪B). On a bien montré que f(A) ∪ f(B) ⊂ f(A ∪B).

Par double inclusion, on a f(A ∪B) = f(A) ∪ f(B)

3. Soient A et B deux parties de E. Montrons que f(A ∩ B) ⊂ f(A) ∩ f(B). Soit y ∈ f(A ∩ B).
Alors il existe x ∈ A ∩ B tel que y = f(x). Comme x ∈ A ∩ B, on a en particulier x ∈ A. Donc
y = f(x) ∈ f(A). De même, x ∈ B, donc y = f(x) ∈ f(B). Ainsi, y ∈ f(A) ∩ f(B). D’où l’inclusion

f(A ∩B) ⊂ f(A) ∩ f(B) .

Exercice 13:
Soient E,F,G trois ensembles, f une application de E dans F et g une application de F dans G.

1. Supposons f et g surjectives.

Montrons que g ◦ f est surjective.

Soit y ∈ G montrons que y admet au moins un antécédent dans E par g ◦ f .
Comme g est surjective, ∃z ∈ F, g(z) = y

De plus f est surjective donc ∃x ∈ E, f(x) = z

Finalement ∃x ∈ E, g(f(x)) = y soit g ◦ f(x) = y

Ainsi :
si f et g sont surjectives,g ◦ f est surjective

2. Supposons f et g injectives.

Montrons que g ◦ f est injective.

Soient (x, x′) ∈ E2 tels que (g ◦ f)(x) = (g ◦ f)(x′)
donc g(f(x)) = f(f(x′))

Mais g est injective donc g(f(x)) = g(f(x′)) ⇒ f(x) = f(x′)

puis comme f est injective f(x) = f(x′) ⇒ x = x′

Ainsi :
si f et g sont injectives,g ◦ f est injective

3. Supposons g ◦ f injective. Montrons que f est injective. Soit (x1, x2) ∈ E2. On suppose que f(x1) =
f(x2). Montrons qu’alors x1 = x2. Comme f(x1) = f(x2), on a g(f(x1)) = g(f(x2)), c’est-à-dire
(g ◦ f)(x1) = (g ◦ f)(x2) et comme l’application g ◦ f est injective, on a x1 = x2. Donc f est injective.
Finalement,

si g ◦ f est injective, alors f est injective

4. Supposons que g ◦ f est surjective. Montrons que g est surjective. Soit z ∈ G. Comme l’application
g ◦ f est surjective, il existe x ∈ E tel que (g ◦ f)(x) = z, c’est-à-dire g(f(x)) = z. Donc f(x) est un
antécédent de z par l’application g dans F . On en déduit donc que g est surjective. Finalement,

si g ◦ f est surjective, alors g est surjective

5. On suppose que g◦f est injective et que f est surjective. Montrons que g est injective. Soit (y1, y2) ∈ F 2

tel que g(y1) = g(y2). Montrons que y1 = y2. On sait que y1 ∈ F et y2 ∈ F (ensemble d’arrivée de
f). Comme f est surjective, il existe (x1, x2) ∈ E2 tel que f(x1) = y1 et f(x2) = y2. On a donc
g(y1) = g(f(x1)) = (g ◦ f)(x1) et g(y2) = g(f(x2)) = (g ◦ f)(x2) et comme g(y1) = g(y2), on a
(g ◦ f)(x1) = (g ◦ f)(x2). Or l’application g ◦ f est injective donc x1 = x2. On a donc y1 = f(x1) =
f(x2) = y2. Ainsi, g est injective. Finalement,

g ◦ f injective
f surjective

}
=⇒ g injective
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6. On suppose que g ◦ f est surjective et que g est injective. Montrons que f est surjective. Soit y ∈ F .
Alors g(y) ∈ G et comme g ◦ f est surjective, il existe x ∈ E tel que (g ◦ f)(x) = g(y), c’est-à-dire
g(f(x)) = g(y). Or g est injective donc f(x) = y. Ainsi, x est un antécédent de y par f . Donc f est
surjective. Finalement,

g ◦ f surjective
g injective

}
=⇒ f surjective

Maintenant que je suis fort(e), voici des extraits de DS sur ce thème !

Exercice 14:

1. R∗ est symétrique par rapport à 0.

De plus, ∀x ∈ R∗, f(−x) = 1
2(−x+ 1

−x) = −1
2(x+ 1

x) = −f(x).

f est donc une fonction impaire

2. f est dérivable sur R∗ comme somme de fonctions qui le sont.

f ′(x) = 1
2(1−

1
x2 )

De plus lim
x→+∞

f(x) = +∞ et lim
x→0+

f(x) = +∞.

Comme la fonction est impaire, on en déduit lim
x→−∞

f(x) = −∞ et lim
x→0−

f(x) = −∞.

On en déduit le tableau de variations suivant :

x

f ′(x)

f(x)

−∞ −1 0 1 +∞

+ 0 − − 0 +

−∞−∞
−1−1

−∞

+∞

11

+∞+∞

3. f n’est pas majorée sur R∗ car lim
x→+∞

f(x) = +∞.

f n’est pas minorée sur R∗ car lim
x→−∞

f(x) = −∞.

4. D’après le tableau de variations, on a :

f([1,+∞[) = [1,+∞[

f(R∗) =]−∞,−1] ∪ [1,+∞[

f([−1, 0[∪]0, 1]) =]−∞,−1] ∪ [1,+∞[

5. (a) On a f(12) = f(2) = 5
4

Ainsi 5
4 admet plusieurs antécédents par f dans R∗ donc f n’est pas injective

(b) D’après la tableau de variations, on constate que 0 n’a pas d’antécédent par f dans R∗ donc

f n’est pas surjective

6. h admettra une réciproque si elle est bijective.

Soit y ∈ [1,+∞[ (ensemble d’arrivée)

Résolvons sur [1,+∞[ (ensemble de départ) l’équation h(x) = y.

h(x) = y ⇔ 1

2
(x+

1

x
) = y

⇔ x2 + 1

x
= 2y

⇔ x2 − 2yx+ 1 = 0

Le discriminant de cette dernière équation vaut ∆ = 4(y2 − 1)

Comme y ∈ [1,+∞[, ∆ ≥ 0

— Si y = 1,∆ = 0 et il n’y a qu’une solution x = 2y
2 = 1 ∈ [1,+∞[
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— Si y > 1,∆ > 0 et l’équation admet sur R deux solutions :

x1 =
2y−

√
∆

2 = y −
√

y2 − 1 et x2 = y +
√
y2 − 1

Comme y > 1, on a clairement x2 > 1
En revanche x1 = y −

√
y2 − 1 = 1

y+
√

y2−1
< 1

Finalement ∀y ∈ [1,+∞[, ∃!x ∈ [1,+∞[ tel que h(x) = y.

On en déduit que h est bijective et admet donc une réciproque :

h−1 :

{
[1,+∞[ → [1,+∞[

y 7→ y +
√

y2 − 1
.

Exercice 15:
Partie A

1. f est dérivable sur R avec f ′x) = 2
3

x
(x2+1)2

On obtient le tableau de variations suivant :

x

f ′(x)

f(x)

−∞ 0 +∞

− 0 +

00

−1
3−1
3

00

On a donc f(R) = [−1
3 , 0[.

2. On remarque que f est paire donc elle ne peut pas être injective.

Par construction l’ensemble d’arrivée étant f(R), tous les éléments de cet ensemble admettent par f
au moins un antécédent dans R donc f est surjective.

3. Prenons par exemple I = R+. On a alors f(I) = [−1
3 , 0[.

f est continue et strictement croissante de I dans f(I) donc, d’après le théorème de la bijection, f est
bijective de I dans f(I). Déterminons sa réciproque.

Soit y ∈ [−1
3 , 0[. Résolvons sur R+ l’équation f(x) = y.

f(x) = y ⇔ −1
3(x2+1)

= y

⇔ −3(x2 + 1) = 1
y

car la fonction inverse est strictement décroissante sur R∗
−

avec −1
3(x2+1)

∈ R∗
− et y ∈ R∗

−
⇔ x2 = −1

3y − 1 = 1+3y
−3y ≥ 0 car y ∈ [−1

3 , 0[

⇔ x =
√

1+3y
−3y ∈ R+ ou x = −

√
1+3y
−3y /∈ R+

Ainsi ∀y ∈ [−1
3 , 0[, ∃!x ∈ R+ tel que f(x) = y donc f est bijective de réciproque :

f−1 :

{
[−1
3 , 0[ → R+

y 7→
√

1+3y
−3y

.

Partie B

1. def fonction(x):

return -1 / (3 *(x**2+1))

2. from math import * # pour pouvoir utiliser la racine carrée

fonction(sqrt(2))

3. Ce programme cherche une valeur approchée à 10−4 près sur R+ de la solution de l’équation f(x) = y
où y ∈ [−1

3 , 0[.
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