Devoir Maison 1 - Première partie correction

Problème 1 : Calcul

On considère les deux réels suivants :

$$\nu = \sqrt[3]{26 + 15\sqrt{3}}$$
 et $\mu = \sqrt[3]{26 - 15\sqrt{3}}$.

Le but de ce problème est de simplifier les expressions de ν et μ .

1. (a) Calculer $\nu\mu$ et $\nu^3 + \mu^3$. D'après les propriétés de la racine cubique, on a :

$$\nu\mu = \sqrt[3]{26 + 15\sqrt{3}} \sqrt[3]{26 - 15\sqrt{3}}$$

$$= \sqrt[3]{\left(26 + 15\sqrt{3}\right) \left(26 - 15\sqrt{3}\right)}$$

$$= \sqrt[3]{26^2 - \left(15\sqrt{3}\right)^2}$$

$$= \sqrt[3]{676 - 675}$$

$$= \sqrt[3]{1}$$

$$= 1 \text{ (car } 1^3 = 1).$$

 Et

$$\nu^3 + \mu^3 = \left(\sqrt[3]{26 + 15\sqrt{3}}\right)^3 + \left(\sqrt[3]{26 - 15\sqrt{3}}\right)^3 = 26 + 15\sqrt{3} + 26 - 15\sqrt{3} = 52.$$

Donc $\nu\mu = 1$ et $\nu^3 + \mu^3 = 52$

(b) Développer $(\nu + \mu)^3$ et simplifier l'expression grâce à la question précédente.

$$(\nu + \mu)^3 = (\nu + \mu)^2 (\nu + \mu)$$

$$= (\nu^2 + 2\nu\mu + \mu^2)(\nu + \mu)$$

$$= \nu^3 + 2\nu^2\mu + \nu\mu^2 + \nu^2\mu + 2\nu\mu^2 + \mu^3$$

$$= \nu^3 + 3\nu^2\mu + 3\nu\mu^2 + \mu^3$$

$$= \nu^3 + \mu^3 + 3\nu\mu(\nu + \mu)$$

$$(\nu + \mu)^3 = 52 + 3(\nu + \mu)$$

- 2. On pose $\lambda = \nu + \mu$ et pour tout $x \in \mathbb{R}$, $P(x) = x^3 3x 52$.
 - (a) Déduire des questions précédentes que $P(\lambda) = 0$. D'après la question précédente, $\lambda^3 = 52 + 3\lambda \iff \lambda^3 - 3\lambda - 52 = 0 \iff P(\lambda) = 0$.
 - (b) Vérifier que P(4) = 0 (on dit que 4 est racine évidente) puis trouver trois réels a, b et c tels que :

$$\forall x \in \mathbb{R}, \quad P(x) = (x-4)(ax^2 + bx + c).$$

On a
$$P(4) = 4^3 - 3 \times 4 - 52 = 64 - 12 - 52 = 0$$
.

On cherche $(a, b, c) \in \mathbb{R}^3$ tel que pour tout $x \in \mathbb{R}$, $(x - 4)(ax^2 + bx + c) = x^3 - 3x - 52$. Soit $(a, b, c) \in \mathbb{R}^3$ et soit $x \in \mathbb{R}$.

 $(x-4)(ax^2+bx+c) = ax^3+bx^2+cx-4ax^2-4bx-4c = ax^3+(b-4a)x^2+(c-4b)x-4c.$ Par identification, on trouve

$$b - 4a = 0 (2)$$

$$\begin{cases} b - 4a = 0 & (2) \\ c - 4b = -3 & (3) \end{cases}$$

$$-4c = -52\tag{4}$$

Après résolution, on trouve

$$a = 1 (5)$$

$$\begin{cases} a = 1 & (5) \\ b = 4 & (6) \\ c = 13 & (7) \\ c = 13 & (8) \end{cases}$$

$$c = 13 \tag{7}$$

$$c = 13 \tag{8}$$

On obtient $(x-4)(x^2+4x+13) = x^3-3x-52$

(c) Résoudre l'équation P(x) = 0 d'inconnue $x \in \mathbb{R}$ et en déduire la valeur de λ . Soit $x \in \mathbb{R}$,

$$P(x) = 0 \iff (x - 4)(x^2 + 4x + 13)$$

 $\iff x = 4 \text{ ou } x^2 + 4x + 13 = 0$

On reconnaît une équation polynomiale du second degré de discriminant -36 < 0. Donc l'unique solution est 4.

Comme λ est racine de P, on trouve $|\lambda = 4|$.

- 3. On pose, pour tout réel x, $Q(x) = (x \nu)(x \mu)$.
 - (a) Soit $x \in \mathbb{R}$. Simplifier l'expression de Q(x) à l'aide des résultats précédents. Soit $x \in \mathbb{R}$, on a

$$Q(x) = (x - \nu)(x - \mu)$$
$$= x^2 - (\nu + \mu)x + \nu\mu$$
$$= x^2 - \lambda x + \nu\mu$$

 $Q(x) = x^2 - 4x + 1$ en utilisant les résultats des questions précédentes

(b) En déduire que ν et μ sont solutions de l'équation $x^2 - 4x + 1 = 0$ d'inconnue $x \in \mathbb{R}$. Soit $x \in \mathbb{R}$, on a

$$x^{2} - 4x + 1 = 0 \iff Q(x) = 0$$

$$\iff (x - \nu)(x - \mu) = 0$$

$$\iff x - \nu = 0 \text{ ou } x - \mu = 0$$

$$\iff x = \nu \text{ ou } x = \mu$$

D'après la question précédente, ν et μ sont les solutions de l'équation $x^2 - 4x + 1 = 0$

4. Conclure.

L'équation $x^2 - 4x + 1 = 0$ est une équation polynomiale du second degré. Son discriminant est égal à 12 > 0. Cette équation a deux solutions $2 + \sqrt{3}$ et $2 - \sqrt{3}$.

Comme $\nu > \mu$, on trouve que $\nu = 2 + \sqrt{3}$ et $\mu = 2 - \sqrt{3}$.

Comme
$$\nu > \mu$$
, on trouve que $\nu = 2 + \sqrt{3}$ et $\mu = 2 - \sqrt{3}$.

On a montré que $\sqrt[3]{26 + 15\sqrt{3}} = 2 + \sqrt{3}$ et $\sqrt[3]{26 - 15\sqrt{3}} = 2 - \sqrt{3}$.