TD01 - Correction

Exercice 1:

- 1. (Les pâquerettes sont des fleurs) OU (Les singes sont des arbres). On a (Vrai) ou (Faux) qui donne $\overline{\text{VRAI}}$
- 2. (Avoir du chocolat) \Rightarrow (On peut faire une mousse au chocolat). FAUX . Ce n'est pas suffisant, on a besoin d'autres ingrédients.
- 3. (Obtenir son concours) \Rightarrow (Réussir les épreuves écrites).

VRAI. Quand on obtient son concours, c'est qu'on a réussi les épreuves écrites et orales.

- 4. (Les poules ont deux pattes) ET (les épinards sont roses) On a (Vrai) ET (Faux). On obtient $\overline{|FAUX|}$
- 5. (Il pleut) \Rightarrow (Il y a des nuages). VRAI
- 6. (Un quadrilatère est un rectangle) \Leftrightarrow (Il a un angle droit). FAUX]. Seule l'implication \Rightarrow est vraie.
- 7. (Napoléon est chinois) \Rightarrow (1+1=3). On a Faux \Rightarrow Faux donc on obtient VRAI pour l'implication. (rappel : une implication $P \Rightarrow Q$ est toujours vraie sauf si P vraie avec Q fausse)
- 8. soit $x \in \mathbb{R}$, $x > 4 \Rightarrow x > 3$. VRAI
- 9. soit $x \in \mathbb{R}$, $x > 3 \Rightarrow x \neq 2$. VRAI
- 10. (L'Homme est un quadripède) ET (il parle). On a (Faux) ET (Vrai). On obtient donc FAUX
- 11. NON(Les poiriers donnent des fraises). On a NON(Faux) donc VRAI.
- 12. soit $x \in \mathbb{R}$, $x^2 > 4 \Rightarrow x > 2$. FAUX. On peut aussi avoir x < -2.

Exercice 2:

- 1. $\forall x \in [0,1], f(x) = -1.$
- 2. $\exists ! a \in \mathbb{R}, g(a) = 0.$
- 3. $\forall x \in A, x \in B$.
- 4. $\forall x \in R, x^2 > 0$.
- 5. $\forall x \in \mathbb{R}_+, \exists ! n \in \mathbb{N}, n \leq x < n+1.$

Exercice 3:

- 1. Il existe au moins un jour de la semaine où Zorro ne monte pas à cheval.
- 2. La proposition correspond à ($1 \le x$) ET (x < y). Sa négation est donc : (x < 1) OU $(x \ge y)$.
- 3. $(x \neq 0)$ et $(y \neq 0)$.
- $4. \ \exists x \in \mathbb{R}, f(x) < 0.$
- 5. Il existe au moins un humain immortel.
- 6. Tous les chiens s'appellent Dingo.
- 7. $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \neq y$.
- 8. $\forall M \in \mathbb{R}_+, \exists n \in \mathbb{N}, |u_n| > M$.
- 9. Se rappeler que $P \Rightarrow Q$ correspond à non(P) ou Q. La négation de la proposition est donc : $\exists x \in E, P \text{ ET } non(Q)$.

10. $\exists x \in \mathbb{R}, |x| \le 1 \text{ ET } |f(x)| > 2.$

Exercice 4:

On obtient:

$\mathbb{N}\subset\mathbb{R}$	$\frac{2}{3} \in \mathbb{R}$	$]0,7]\subset\mathbb{R}$	$\sqrt{3} \notin \mathbb{Q}$	$[2,3]\subset [0,5]$	$\{1,2,4\} \not\subset \{0,2,4\}$	$2 \in \{0, 2, 4\}$
$\boxed{\{-1,1\}\not\subset\mathbb{N}}$	$(3,\pi) \in \mathbb{R}^2$	$(3,\frac{1}{2}) \in \mathbb{N} \times \mathbb{R}$	$\left \left(\frac{1}{2}, 3 \right) \notin \mathbb{N} \times \mathbb{R} \right $	$(4,1,9) \in \mathbb{N}^3$	$\{-1,1\} \subset \{-1,0,1\}$	$\pi\in\mathbb{R}$

Exercice 5:

1. On cherche toutes les fractions $\frac{p}{n}$, $p \in \mathbb{N}$, $n \in \mathbb{N}$, avec $1 \le p \le 2n \le 7$.

On a donc $n \in \{1, 2, 3\}$

- Si $n = 1 : p \in \{1, 2\}$
- Si $n = 2 : p \in \{1, 2, 3, 4\}$
- Si $n = 3 : p \in \{1, 2, 3, 4, 5, 6\}$

Finalement, en regroupant toutes les possibilités, on obtient

$$A = \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, 2, \}$$

2. Soit $x \in \mathbb{R}$, $x^2 = 4 \Leftrightarrow x = 2$ ou x = -2.

Ainsi
$$B = \{-2, 2\}$$
 et $\mathcal{P}(B) = \{\varnothing, \{-2\}, \{2\}, B\}$

Exercice 6:

- 1. $A \cup B = [-1, \frac{5}{2}], \quad A \cup C = [-1, 1] \cup \{2\}, \quad B \cup C = [0, \frac{5}{2}]$
- $2. \ A\cap B=]0,1], \quad A\cap C=\{0,1\}, \quad B\cap C=\{1,2\}, \quad A\cap B\cap C=\{1\}$
- 3. $\overline{A} =]-\infty, -1[\cup]1, +\infty[, \overline{B} =]-\infty, 0] \cup [\frac{5}{2}, +\infty[.$
- 4. $\overline{A} \cup B =]-\infty, -1[\cup]0, +\infty[, \overline{B} \cap C = \{0\}.$

Exercice 7:

$$\begin{array}{ll} X \cup \varnothing = X & X \cap \varnothing = \varnothing \\ (X \cap Y) \cup (X \cap \overline{Y}) = X \cap (Y \cup \bar{Y}) = X \cap E = X \\ (X \cup Y) \cap (X \cup \overline{Y}) = X \cup (Y \cap \bar{Y}) = X \cup \varnothing = X \end{array}$$

Exercice 8:

1. Soit $a \in \{x \in \mathbb{R} ; x^2 = 4x - 2\}$ Montrons que $a \in \mathbb{R}_+$.

On a
$$a^2 = 4a - 2 \Leftrightarrow a^2 - 4a + 2 = 0$$
.

On obtient 2 racines $a_1 = 2 - \sqrt{2}$ et $a_2 = 2 + \sqrt{2}$.

Dans les deux cas, ces valeurs sont dans \mathbb{R}_+ .

Ainsi
$$\{x \in \mathbb{R} ; x^2 = 4x - 2\} \subset \mathbb{R}_+$$

- 2. Procédons par double inclusion.
 - * Montrons que $B \subset A$:

Soit $(x, y) \in B$, alors $\exists t \in \mathbb{R}, (x, y) = (t + 1, 4t + 3)$

Ainsi 4x - y = 4(t+1) - (4t+3) = 1 donc $(x, y) \in A$.

Donc $B \subset A$

* Montrons que $A \subset B$.

Soit $(x, y) \in A$ alors $4x - y = 1 \Leftrightarrow y = 4x - 1$.

Ainsi (x, y) = (x, 4x - 1).

En posant t = x - 1, on a $(x, y) = (t + 1, 4(t + 1) - 1) = (t + 1, 4t + 3) \in B$

Donc $A \subset B$

Finalement par double inclusion, A = B

Exercice 9:

- 1. Si un polygone n'est pas un triangle alors il n'a pas trois côtés.
- 2. $f(x) < 0 \Rightarrow x < 1$

- $3. \ a > 1 \Rightarrow a \notin A$
- 4. $f(x) = f(y) \Rightarrow x = y$
- 5. Si les touristes achètent des glaces alors il ne fait pas froid.

Exercice 10:

En utilisant les différentes techniques de démonstration, répondre aux questions suivantes.

1. Soit x un réel tel que x < 1. Alors x - 4 < -3.

Ainsi, $(x-4)^2 > 9$ car la fonction carrée est décroissante sur $]-\infty$; 0].

D'où,
$$(x-4)^2 + 3 > 12$$
.

2. On raisonne par double implication.

 (\Longrightarrow) On suppose que $\forall n \in \mathbb{N}, a \times 2^n + b \times 3^n = 0.$

Alors en particulier, pour n = 0, $a \times 2^0 + b \times 3^0 = 0 \iff a + b = 0$

Et pour n = 1, $a \times 2^{1} + b \times 3^{1} = 0 \iff 2a + 3b = 0$.

On a donc
$$\begin{cases} a+b=0 \\ 2a+3b=0 \end{cases} \iff \begin{cases} a=-b \\ -2b+3b=0 \end{cases} \iff \begin{cases} a=-b \\ b=0 \end{cases} \iff \begin{cases} a=0 \\ b=0 \end{cases}$$

On a donc montré que $(\forall n \in \mathbb{N}, \ a \times 2^n + b \times 3^n = 0) \Longrightarrow (a = b = 0).$

 (\longleftarrow) On suppose que a = b = 0.

Soit $n \in \mathbb{N}$. Alors $a \times 2^n + b \times 3^n = 0 \times 2^n + 0 \times 3^n = 0 + 0 = 0$.

On a donc montré que $(\forall n \in \mathbb{N}, a \times 2^n + b \times 3^n = 0) \iff (a = b = 0).$

Conclusion : On a $(\forall n \in \mathbb{N}, a \times 2^n + b \times 3^n = 0) \iff (a = b = 0).$

3. Soient a, b, c trois nombres réels. Supposons par l'absurde que a+b+c=1 et $a<\frac{1}{3},\ b<\frac{1}{3}$ et $c<\frac{1}{3}$.

Alors $a+b+c<\frac{1}{3}+\frac{1}{3}+\frac{1}{3} \iff a+b+c<1$, ce qui est absurde.

Donc $a \ge \frac{1}{3}$ ou $b \ge \frac{1}{3}$ ou $c \ge \frac{1}{3}$.

Autrement dit,

si a, b et c sont 3 réels tels que a + b + c = 1, alors l'un de ces nombres est supérieur ou égal à $\frac{1}{3}$.

4. On raisonne par contraposition. On va montrer que si n est impair, alors $n^2 - 1$ est divisible par 8.

Soit n un entier impair. Alors il existe un entier p tel que n = 2p + 1.

Ainsi,
$$n^2 - 1 = (2p + 1)^2 - 1 = 4p^2 + 4p + 1 - 1 = 4p^2 + 4p = 4p(p + 1)$$
.

Or, en raisonnant par disjonction de cas (exemple vu en cours), on pet montrer que p(p+1) est un nombre pair. Donc il existe un entier k tel que p(p+1) = 2k.

D'où,
$$n^2 - 1 = 4 \times 2k = 8k$$
.

On en déduit que $n^2 - 1$ est divisible par 8.

Conclusion: $si(n^2-1)$ n'est pas divisible par 8, alors n est pair.

5. Est-il vrai que $\forall x \in \mathbb{R}, \sqrt{x^2} = x$?

Non, pour x = -1, $\sqrt{(-1)^2} = 1 \neq -1$. (C'est même faux pour tous les nombres strictement négatifs.)

Exercice 11:

1. Soit (u_n) la suite définie par $u_0 = 3$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 5u_n - 4$. Montrer que pour tout $n \in \mathbb{N}$, $u_n = 1 + 2 \times 5^n$.

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n) : u_n = 1 + 2 \times 5^n$.

Initialisation: Pour n = 0: on a $1 + 2 \times 5^0 = 1 + 2 = 3 = u_0$ donc $\mathcal{P}(0)$ est vraie.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$ fixé. Supposons que $\mathcal{P}(n)$ est vraie. Montrons que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que $u_{n+1} = 1 + 2 \times 5^{n+1}$.

Par définition de la suite, $u_{n+1} = 5u_n - 4$.

Par hypothèse de récurrence, on a $u_n = 1 + 2 \times 5^n$.

Donc $u_{n+1} = 5(1 + 2 \times 5^n) - 4 = 5 + 2 \times 5^{n+1} - 4 = 1 + 2 \times 5^{n+1}$.

Ainsi, $\mathcal{P}(n) \Longrightarrow \mathcal{P}(n+1)$

Conclusion : D'après le principe de récurrence, la propriété $\mathcal{P}(n)$ est donc vraie pour tout n entier naturel.

2. Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$ $u_n \leq 1$.

<u>Initialisation</u>: $u_0 = 0 \le 1$ donc $\mathcal{P}(0)$ est vraie.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$ fixé. Supposons que $\mathcal{P}(n)$ est vraie et montrons que $\mathcal{P}(n+1)$ est vraie. Montrons donc que $u_{n+1} \leq 1$.

Par hypothèse de récurrence,

$$u_n \le 1 \iff 3u_n \le 3$$

$$\iff 3u_n - 1 \le 2$$

$$\iff \frac{3u_n - 1}{2} \le 1$$

$$\iff u_{n+1} \le 1$$

Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

3. Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n) : u_n = \frac{1}{2^n} - 2n + 1$.

<u>Initialisation</u>: $\frac{1}{20} - 2 \times 0 + 1 = 1 - 0 + 1 = 2 = u_0 \text{ donc } \mathcal{P}(0) \text{ est vraie.}$

<u>Hérédité</u>: Soit $n \in \mathbb{N}$ fixé. Supposons que $\mathcal{P}(n)$ est vraie et montrons que $\mathcal{P}(n+1)$ est vraie. Montrons donc que $u_{n+1} = \frac{1}{2^{n+1}} - 2(n+1) + 1 = \frac{1}{2^{n+1}} - 2n - 1$.

On a

$$u_{n+1} = \frac{1}{2}u_n - \frac{2n+3}{2} \quad \text{par d\'efinition de la suite}$$

$$= \frac{1}{2}\left(\frac{1}{2^n} - 2n + 1\right) - \frac{2n+3}{2} \quad \text{par hypoth\`ese de r\'ecurrence}$$

$$= \frac{1}{2^{n+1}} - n + \frac{1}{2} - n - \frac{3}{2}$$

$$= \frac{1}{2^{n+1}} - 2n - 1$$

Donc $\mathcal{P}(n+1)$ est vraie.

<u>Conclusion</u>: D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

4. Soit (u_n) la suite définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1+2u_n}{2+u_n}$. Montrer que : $\forall n \in \mathbb{N}^*, 0 < u_n \leq 1$.

Pour tout $n \in \mathbb{N}^*$, soit $\mathcal{P}(n) : 0 < u_n \le 1$.

<u>Initialisation</u>: Pour n = 1, $u_1 = \frac{1+2u_0}{2+u_0} = \frac{1}{2}$. Donc $0 < u_1 \le 1$ et $\mathcal{P}(1)$ est vraie.

<u>Hérédité</u>: Soit $n \in \mathbb{N}^*$ fixé. Supposons que $\mathcal{P}(n)$ est vraie. Montrons que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que $0 < u_{n+1} \le 1$.

Par hypothèse de récurrence, $u_n > 0$ donc $1 + 2u_n > 0$ et $2 + u_n > 0$. Par quotient, $u_{n+1} = \frac{1+2u_n}{2+u_n} > 0$.

D'autre part, $u_{n+1} - 1 = \frac{1+2u_n}{2+u_n} - 1 = \frac{1+2u_n-2-u_n}{2+u_n} = \frac{u_n-1}{2+u_n} \le 0$. En effet, par hypothèse de récurrence, $u_n \le 1$ donc $u_n - 1 \le 0$ et $u_n > 0$ donc $2 + u_n > 0$. Donc par quotient, $\frac{u_n-1}{2+u_n} \le 0$.

Ainsi, $u_{n+1} \leq 1$.

D'où $\mathcal{P}(n) \Longrightarrow \mathcal{P}(n+1)$

Conclusion : D'après le principe de récurrence, la propriété $\mathcal{P}(n)$ est donc vraie pour tout n entier naturel non nul.

5. Montrons par récurrence simple que pour tout entier naturel n, $13^n - 4^n$ est divisible par 9. On notera P_n la propriété au rang n.

Initialisation pour n = 0:

$$13^{0} - 4^{0} = 0 = 9 \times 0$$
 donc P_{0} est vraie

Hérédité:

Soit $n \in \mathbb{N}$, fixé. On suppose la propriété vraie au rang n, c'est à dire qu'il existe $p \in \mathbb{N}$, $13^n - 4^n = 9p$. Montrons que la propriété reste vraie au rang n+1, c'est à dire que $\exists q \in \mathbb{N}, 13^{n+1}-4^{n+1}=9q$.

On a
$$13^{n+1} - 4^{n+1} = (9+4) \times 13^n - 4 \times 4^n = 9 \times 13^n + 4 \times 13^n - 4 \times 4^n = 9 \times 13^n + 4(13^n - 4^n)$$

Soit d'après l'hypothèse de récurrence : $13^{n+1} - 4^{n+1} = 9 \times 13^n + 4 \times 9p = 9 \times (13^n + 4p)$

Il suffit donc de poser $q = 13^n + 4p$.

On a
$$P_n \Rightarrow P_{n+1}$$

D'après le principe de récurrence la propriété P_n est donc vraie pour tout n entier naturel.

6. Il s'agit ici d'une récurrence double.

Montrons à l'aide d'une récurrence double que pour tout entier naturel $n, u_n = 2^{n+1} + (-1)^n$. On notera P_n la propriété au rang n.

Initialisation pour n = 0 et n = 1:

On a
$$u_0 = u_1 = 3$$
.

Par ailleurs
$$2^{0+1} + (-1)^0 = 3$$
 et $2^{1+1} + (-1)^1 = 3$

Donc P_0 et P_1 sont vraie.

Hérédité:

Soit $n \in \mathbb{N}$, fixé. On suppose la propriété vraie aux rangs n et n + 1, c'est à dire que :

$$u_n = 2^{n+1} + (-1)^n$$
 et $u_{n+1} = 2^{n+2} + (-1)^{n+1}$.

Montrons que la propriété reste vraie au rang n+2, c'est à dire que $u_{n+2}=2^{n+3}+(-1)^{n+2}$

D'après l'hypothèse de récurrence, $u_n = 2^{n+1} + (-1)^n$ et $u_{n+1} = 2^{n+2} + (-1)^{n+1}$

d'où
$$u_{n+2} = u_{n+1} + 2u_n = 2^{n+2} + (-1)^{n+1} + 2(2^{n+1} + (-1)^n)$$

soit
$$u_{n+2} = 2^{n+3} + (-1)^n(-1+2)$$

soit encore
$$u_{n+2} = 2^{n+3} + (-1)^{n+2}$$

On a
$$P_n$$
 et $P_{n+1} \Rightarrow P_{n+2}$

D'après le principe de récurrence double la propriété P_n est donc vraie pour tout n entier naturel.

7. Montrons par récurrence simple que pour tout entier naturel n, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$. On notera

 P_n la propriété au rang n.

Initialisation pour n=0

$$\sum_{k=0}^{0} k^2 = 0 \text{ et } \frac{0 \times (0+1)(2 \times 0 + 1)}{6} = 0 \text{ donc } P_0 \text{ est vraie.}$$

Soit
$$n \in \mathbb{N}$$
, fixé. On suppose la propriété P_n vraie, c'est à dire :
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Montrons que la propriété P_{n+1} reste vraie, c'est à dire que :

$$\sum_{k=0}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$

D'après l'hypothèse de récurrence, $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

soit
$$\sum_{k=0}^{n+1} k^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$

soit
$$\sum_{k=0}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$

On a
$$P_n \Rightarrow P_{n+1}$$

D'après le principe de récurrence la propriété P_n est donc vraie pour tout n entier naturel.

Exercice 12:

On commence par établir une conjecture.

$$u_0 = 1$$

$$u_1 = u_0 + 2 \times 0 + 3 = 4$$

$$u_2 = u_1 + 2 \times 1 + 3 = 9$$

$$u_3 = u_2 + 2 \times 2 + 3 = 16$$

On remarque que tous les termes sont des carrés d'entiers. Plus précisément, on conjecture que pour tout $n \in \mathbb{N}$, $u_n = (n+1)^2$.

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n) : u_n = (n+1)^2$

Initialisation : $(0+1)^2 = 1 = u_0$ donc $\mathbb{P}(0)$ est vraie.

Hérédité : Soit $n \in \mathbb{N}$ fixé. Supposons que $\mathcal{P}(n)$ est vraie. Montrons que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que $u_{n+1} = (n+2)^2$.

On a $u_{n+1} = u_n + 2n + 3 = (n+1)^2 + 2n + 3$ par hypothèse de récurrence.

Donc $u_{n+1} = n^2 + 2n + 1 + 2n + 3 = n^2 + 4n + 4 = (n+2)^2$. Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : D'après le principe de récurrence, la propriété $\mathcal{P}(n)$ est donc vraie pour tout entier naturel

Je me perfectionne!

Exercice 13:

Pour tout $n \in \mathbb{N}^*$, soit $\mathcal{P}(n) : 1 \leq u_n \leq n^2$. Montrons la propriété par récurrence sur n.

<u>Initialisation</u>: On a $u_1 = 1$ donc $1 \le u_1 \le 1^2$. Donc $\mathcal{P}(1)$ est vraie.

On a $u_2 = u_1 + \frac{2}{2}u_0 = 1 + 1 = 2$ donc $1 \le u_2 \le 2^2$. Donc $\mathcal{P}(2)$ est vraie.

<u>Hérédité</u>: Soit $n \in \mathbb{N}^*$ fixé. On suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies. Montrons que $\mathcal{P}(n+2)$ est vraie. On va donc montrer que $1 \le u_{n+2} \le (n+2)^2$.

Par définition, $u_{n+2} = u_{n+1} + \frac{2}{n+2}u_n$.

Or, par hypothèse de récurrence, $u_n \ge 1$ et $u_{n+1} \ge 1$ donc $u_{n+2} \ge 1 + \frac{2}{n+2} \times 1 \ge 1$.

D'autre part, par hypothèse de récurrence, $u_n \le n^2$ et $u_{n+1} \le (n+1)^2$. Ainsi, $u_{n+2} \le (n+1)^2 + \frac{2}{n+2}n^2$.

Ainsi,
$$u_{n+2} \le (n+1)^2 + \frac{2}{n+2}n^2$$

$$(n+2)^{2} - (n+1)^{2} - \frac{2}{n+2}n^{2} = n^{2} + 4n + 4 - n^{2} - 2n - 1 - \frac{2}{n+2}n^{2}$$

$$= 2n + 3 - \frac{2}{n+2}n^{2}$$

$$= \frac{(2n+3)(n+2) - 2n^{2}}{n+2}$$

$$= \frac{2n^{2} + 4n + 3n + 6 - 2n^{2}}{n+2}$$

$$= \frac{7n+6}{n+2} > 0$$

Donc $u_{n+2} \leq (n+2)^2$ et $\mathcal{P}(n+2)$ est vraie.

Conclusion : D'après le principe de récurrence double, pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$ est vraie.

Exercice 14:

Il s'agit d'une récurrence forte.

Montrons à l'aide d'une récurrence forte que pour tout entier naturel $n, u_n = 3n$. On notera P_n la propriété au rang n.

Initialisation pour n = 0:

On a $u_0 = 0$ et $3 \times 0 = 0$ donc P_0 est vraie.

Hérédité:

Soit $n \in \mathbb{N}$, fixé. On suppose la propriété vraie jusqu'au rang n,

c'est à dire que $\forall k \in [0, n], u_k = 3k$.

Montrons que la propriété reste vraie au rang n+1, c'est à dire que $u_{n+1}=3(n+1)$

D'après l'hypothèse forte de récurrence, $u_{n+1} = \frac{2}{n} \sum_{k=0}^{n} u_k = \frac{6}{n} \sum_{k=0}^{n} k$

soit
$$u_{n+1} = \frac{6}{n} \times \frac{n(n+1)}{2} = 3(n+1)$$

On a $\forall k \in [0, n] P_k \Rightarrow P_{n+1}$

D'après le principe de récurrence forte la propriété P_n est donc vraie pour tout n entier naturel.

Exercice 15:

1. Commençons par l'existence.

Pour tout $n \in \mathbb{N}^*$, soit $\mathcal{P}(n) : \exists (p,q) \in \mathbb{N}^2, \ n = 2^p(2q+1).$

Initialisation : On a $1 = 2^0(2 \times 0 + 1)$ donc $\mathcal{P}(1)$ est vraie avec p = q = 0.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$ fixé. On suppose la propriété vraie jusqu'au rang n, montrons qu'elle est vraie au rang n + 1.

- (a) Si n+1 est pair, il existe $k \in \mathbb{N}$ tel que n+1=2k. Comme $k \leq n$, par hypothèse de récurrence, il existe $(r,s) \in \mathbb{N}^2$ tel que $k=2^r(2s+1)$. Ainsi, $n+1=2\times 2^r(2s+1)=2^{r+1}(2s+1)$. Donc la propriété est vérifiée au rang n+1 avec p=r+1 et q=s.
- (b) Si n+1 est impair, il existe $k \in \mathbb{N}$ tel que $n+1=2k+1=2^0(2k+1)$. Donc la propriété est vérifiée au rang n+1 avec p=0 et q=k.

<u>Conclusion</u>: D'après le principe de récurrence forte, pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$ est vraie.

2. Montrons l'unicité de la décomposition.

Soit
$$n \in \mathbb{N}^*$$
. Soit $(p,q) \in \mathbb{N}^2$ et $(r,s) \in \mathbb{N}^2$ tels que $n = 2^p(2q+1) = 2^r(2s+1)$.

Quitte à échanger les couples (p,q) et (r,s), supposons que $p \geq r$.

Alors
$$2^p(2q+1) = 2^r(2s+1) \iff 2^{p-r}(2q+1) = 2s+1$$
.

2s+1 est un entier impair donc $2^{p-r}(2q+1)$ aussi, ce qui est impossible si $p \neq r$ (sinon il serait multiple de 2). Donc p=r.

Ainsi,
$$2q + 1 = 2s + 1 \iff q = s$$
.

On a donc (p,q)=(r,s), ce qui prouve l'unicité de la décomposition.

Exercice 16:

- 1. Montrons que A = B par double inclusion.
 - \star Soit $x \in A$. Montrons que $x \in B$.

Si $x \in A$, alors $x \in A \cup B = A \cap B$,

Ce qui signifie que $x \in A$ et $x \in B$.

Donc $A \subset B$

 \star Soit $x \in B$. Montrons que $x \in A$.

Si $x \in B$, alors $x \in A \cup B = A \cap B$,

Ce qui signifie que $x \in A$ et $x \in B$.

Donc $B \subset A$

Finalement, par double inclusion, $\overline{A=B}$

2. \star Montrons d'abord que $A \subset B$.

Soit $x \in A$, alors $x \in A \cup B = B \cap C$ donc $x \in B$ et $x \in C$.

Ainsi $x \in B$ et $A \subset B$

 \star Montrons ensuite que $B \subset C$.

Soit $x \in B$, alors $x \in A \cup B = B \cap C$ donc $x \in B$ et $x \in C$.

Ainsi $x \in C$ et $B \subset C$

Finalement, on obtient $A \subset B \subset C$

Exercice 17:

Montrons par récurrence simple que pour tout entier naturel $n \ge 2$, $\forall x \in]-1, 0[\cup]0, +\infty[, (1+x)^n > 1+nx$. On notera P_n la propriété au rang n.

Initialisation pour n=2:

on a
$$(1+x)^2 = 1 + 2x + x^2$$

Or pour
$$x \in]-1,0[\cup]0,+\infty[,x^2>0$$
 d'où $(1+x)^2>1+2x$

La propriété P_2 est vraie.

Hérédité :

Soit $n \in \mathbb{N}$, $n \geq 2$, fixé. On suppose la propriété vraie au rang n, c'est à dire que :

$$\forall x \in]-1,0[\cup]0,+\infty[,(1+x)^n > 1+nx.$$

Montrons que la propriété reste vraie au rang n + 1, c'est à dire que :

$$\forall x \in]-1,0[\cup]0,+\infty[,(1+x)^{n+1}>1+(n+1)x$$

D'après l'hypothèse de récurrence,
$$\forall x \in]-1,0[\cup]0,+\infty[,(1+x)^n>1+nx$$

soit
$$\forall x \in]-1, 0[\cup]0, +\infty[, (1+x)^{n+1} > (1+nx)(1+x)$$
 puisque $1+x>0$

Ainsi
$$\forall x \in]-1, 0[\cup]0, +\infty[, (1+x)^{n+1} > 1 + (n+1)x + nx^2 > 1 + (n+1)x$$
 puique $nx^2 > 0$

On a $P_n \Rightarrow P_{n+1}$

D'après le principe de récurrence la propriété P_n est donc vraie pour tout n entier naturel supérieur ou égal à 2.

Exercice 18:

 $n \text{ impair} \Rightarrow n^2 \text{ impair}$

On calcule directement $n^2 = (2p+1)^2 = 4p^2 + 4p + 1 = 2(2p^2 + 2p) + 1$ ce qui prouve que n^2 impair.

 n^2 impair $\Rightarrow n$ impair

On démontre la contraposée "n pair $\Rightarrow n^2$ pair". (cf cours)

Maintenant que je suis fort(e), voici des extraits de DS!

Exercice 19:

1. $(A \cup B) \cap (A \cup \bar{B})$ est le développement de $(A \cup (B \cap \bar{B}))$.

De même $(\bar{A} \cup B) \cap (\bar{A} \cup \bar{B})$ est le développement de $(\bar{A} \cup (B \cap \bar{B}))$.

Donc $X = (A \cup (B \cap \bar{B})) \cap (\bar{A} \cup (B \cap \bar{B})).$

Or $B \cap \bar{B} = \emptyset$ d'où $X = (A \cup \emptyset) \cap (\bar{A} \cup \emptyset)$

Soit $X = A \cap \bar{A} = \emptyset$

De la même manière $(A \cap B) \cup (A \cap \bar{B})$ est le développement de $(A \cap (B \cup \bar{B}))$.

Et $(\bar{A} \cap B) \cup (\bar{A} \cap \bar{B})$ est le développement de $(\bar{A} \cap (B \cup \bar{B}))$.

Donc $Y = (A \cap (B \cup \bar{B})) \cup (\bar{A} \cap (B \cup \bar{B})).$

Or $B \cup \bar{B} = E$ d'où $Y = (A \cap E) \cup (\bar{A} \cap E)$

Soit $Y = A \cup \bar{A} = E$

2. Il s'agit de démontrer une équivalence, on va donc procéder par double implication.

 \Rightarrow On a $\bar{A} \subset B$. Montrons que $A \cup B = E$.

Il s'agit de montrer l'égalité de deux ensembles, on procède donc par double inclusion.

— Comme A et B sont des parties de E on a clairement $A \cup B \subset E$

— Soit $x \in \underline{E}$ alors $x \in A \cup \overline{A}$, c'est à dire $x \in A$ ou $x \in \overline{A}$.

Comme $\bar{A} \subset B$, on a donc $x \in A$ ou $x \in B$, soit $x \in A \cup B$

Ceci prouve que $E \subset A \cup B$.

Ainsi on a prouvé par double inclusion que $A \cup B = E$.

 \sqsubseteq On a $A \cup B = E$. Montrons que $\bar{A} \subset B$.

Soit $x \in \bar{A}$. Alors x qui est aussi un élément de E appartient à $A \cup B$.

Ainsi $x \in A$ ou $x \in B$ et comme $x \notin A$ par hypothèse, on en déduit donc que $x \in B$.

Finalement on a $\bar{A} \subset B$.

 $3.\ {\rm Pour}$ démontrer l'égalité des deux ensembles, on procède par double inclusion :

— Montrons que $A \subset B$.

Soit $x \in A$ alors $\exists p, q \in \mathbb{N}$ tels que x = 4p = 6q.

L'égalité 4p=6q donne après simplification 2p=3q. On en déduit donc que q est pair. Ainsi $\exists a \in \mathbb{N}$ tel que q=2a.

Finalement x=6q=12a donc x est un multiple de 12. Ainsi $x\in B$ d'où $A\subset B$

— Montrons que $B \subset A$

Soit $x \in B$ alors $\exists p \in \mathbb{N}$ tels que $x = 12p = 4 \times (3p) = 6 \times (2p)$.

Ainsi x est un multiple de 4 et de 6. Donc $x \in A$

Donc $B \subset A$.

Par conséquent par double inclusion, les deux ensembles sont égaux.

Exercice 20:

Partie A

1. f est dérivable sur son ensemble de définition de dérivée $f'(x) = \frac{1}{2}(1 - \frac{2}{x^2}) = \frac{1}{2}\frac{x^2 - 2}{x^2}$.

f' est donc du signe de $x^2 - 2$.

On obtient le tableau de variation suivant :

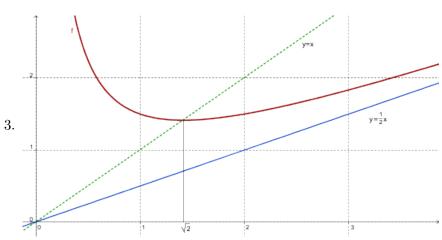
011 000			000200		101110
x	0		$\sqrt{2}$		$+\infty$
f'(x)		_	0	+	
f(x)		¥	$\sqrt{2}$	7	

Remarque : $f(\sqrt{2}) = \sqrt{2}$. on dit que $\sqrt{2}$ est un point fixe de f.

2. Un calcul direct de limites donne : $\lim_{x\to 0^+} f(x) = +\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$.

Par ailleurs $f(x) = \frac{1}{2}x + \frac{1}{x}$ d'où $\lim_{x \to +\infty} f(x) - \frac{1}{2}x = \lim_{x \to +\infty} \frac{1}{x} = 0$

Ainsi la droite Δ d'équation $y = \frac{1}{2}x$ est une asymptote oblique de la courbe représentative de f.



Partie B

- 1. a) $u_0 = 1$, $u_1 = f(u_0) = f(1) = \frac{3}{2}$ $u_2 = f(u_1) = f(\frac{3}{2}) = \frac{17}{12}$
 - b) Montrons par récurrence simple que $\forall n \in \mathbb{N}^*$, la propriété suivante $\sqrt{2} < u_{n+1} < u_n \le \frac{3}{2}$ est vraie. On notera P_n cette propriété.

Initialisation pour n = 1:

D'après la question précédente on a $\sqrt{2} < u_2 < u_1 \le \frac{3}{2}$ donc P_1 est vérifiée.

<u>Hérédité</u>:

Soit $n \in \mathbb{N}^*$, fixé.

On suppose la propriété P_n . Montrons qu'elle reste vraie au rang n+1, c'est à dire que $\sqrt{2} < u_{n+2} < u_{n+1} \le \frac{3}{2}$.

On a d'après l'hypothèse de récurrence $\sqrt{2} < u_{n+1} < u_n \le \frac{3}{2}$.

Or d'après la partie A, on sait que sur $[\sqrt{2}, +\infty[$, la fonction f est strictement croissante donc a fortiori sur $[\sqrt{2}, \frac{3}{2}]$, d'où :

$$f(\sqrt{2}) < f(u_{n+1}) < f(u_n) \le f(\frac{3}{2})$$

Soit
$$\sqrt{2} < u_{n+2} < u_{n+1} \le \frac{17}{12} \le \frac{3}{2}$$
.

Ainsi la propriété est vraie au rang n+1.

D'après le principe de récurrence la propriété P_n est vraie pour tout entier naturel $n \in \mathbb{N}^*$.

Ceci prouve que la suite (u_n) est décroissante et minorée par $\sqrt{2}$ donc elle converge.

2. a) Soit $n \in \mathbb{N}^*$.

$$|u_n - \sqrt{2}| = u_n - \sqrt{2}$$
 puisque d'après la question proédente $\sqrt{2} < u_n$.

Or
$$u_n - \sqrt{2} = \frac{1}{2}(u_{n-1} + \frac{2}{u_{n-1}}) - \sqrt{2}$$
.

$$u_n - \sqrt{2} = \frac{1}{2u_{n-1}}(u_{n-1}^2 - 2\sqrt{2}u_{n-1} + 2).$$

Ainsi
$$u_n - \sqrt{2} = \frac{1}{2u_{n-1}} (u_{n-1} - \sqrt{2})^2$$
.

Or
$$\forall n \in \mathbb{N}^*, u_{n-1} \ge 1$$
 donc $\forall n \in \mathbb{N}^*, u_n - \sqrt{2} \le \frac{1}{2}(u_{n-1} - \sqrt{2})^2$

b) Montrons par récurrence simple que $\forall n \in \mathbb{N}^*, |u_n - \sqrt{2}| \leq (\frac{1}{2})^{2^{n+1}-1}$. On notera P_n cette propriété. Initialisation pour n=0

On a
$$u_0 - \sqrt{2} = 1 - \sqrt{2} \approx -0.41$$
 donc $|u_0 - \sqrt{2}| < \frac{1}{2}$ donc P_0 est vérifiée.

<u>Hérédité</u>: Soit $n \in N$ fixé.

On suppose P_n vraie. Montrons que P_{n+1} vraie, c'est à dire que $|u_{n+1} - \sqrt{2}| \le \left(\frac{1}{2}\right)^{2^{n+2}-1}$.

D'après la question précédente on a $\forall n \in \mathbb{N}, |u_{n+1} - \sqrt{2}| \leq \frac{1}{2}(u_n - \sqrt{2})^2$.

Soit d'après notre hypothèse de récurrence :

$$|u_{n+1} - \sqrt{2}| \le \frac{1}{2} ((\frac{1}{2})^{2^{n+1}-1})^2.$$

$$|u_{n+1} - \sqrt{2}| \le \frac{1}{2} (\frac{1}{2})^{2^{n+2} - 2}.$$

$$|u_{n+1} - \sqrt{2}| \le (\frac{1}{2})^{2^{n+2}-1}$$

La propriété est donc vérifiée au rang n+1.

D'après le principe de récurrence la propriété P_n est vraie pour tout entier naturel n.

c) Ainsi on a $\lim_{n\to+\infty} (\frac{1}{2})^{2^{n+1}-1} = 0$ car $|\frac{1}{2}| < 1$. On peut donc conclure que $\lim_{n\to\infty} u_n = \sqrt{2}$

La convergence de cette suite est particulièrement rapide.