Devoir Maison 1 - Deuxième partie - correction

Exercice 1:

Soit (u_n) la suite définie par $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{3u_n + 1} \end{cases}$

1. Montrer que pour tout $n \in \mathbb{N}$, $u_n > 0$ et $u_n \leq 1$.

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n) : 0 < u_n \le 1$.

<u>Initialisation</u>: $u_0 = 1$ donc $0 < u_0 \le 1$ et $\mathcal{P}(0)$ est vraie.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$ fixé. Supposons que $\mathcal{P}(n)$ est vraie et montrons que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que $0 < u_{n+1} \le 1$.

Par hypothèse de récurrence, $u_n > 0$ donc $3u_n + 1 > 0$ et par quotient, $u_{n+1} = \frac{u_n}{3u_n + 1} > 0$.

D'autre part, par hypothèse de récurrence, $u_n > 0$ donc $3u_n + 1 > 1$ donc $\frac{1}{3u_n + 1} < 1$.

Ainsi, comme $u_n > 0$, $u_{n+1} \frac{u_n}{3u_n + 1} < u_n \le 1$ car $u_n \le 1$ par hypothèse de récurrence.

Ainsi, $0 < u_{n+1} \le 1$ et $\mathcal{P}(n+1)$ est vraie.

<u>Conclusion</u>: D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

2. Montrer que pour tout $n \in \mathbb{N}$, $u_n = \frac{1}{1+3n}$.

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n) : u_n = \frac{1}{1+3n}$.

<u>Initialisation</u>: $\frac{1}{1+3\times 0} = 1 = u_0 \text{ donc } \mathcal{P}(0) \text{ est vraie.}$

<u>Hérédité</u>: Soit $n \in \mathbb{N}$ fixé. Supposons que $\mathcal{P}(n)$ est vraie et montrons que $\mathcal{P}(n+1)$ est vraie, c'est-à-dire que $u_{n+1} = \frac{1}{3(n+1)+1} = \frac{1}{3n+4}$.

On a

$$u_{n+1} = \frac{u_n}{3u_n + 1} \quad \text{par d\'efinition de la suite}$$

$$= \frac{\frac{1}{3n + 1}}{3\frac{1}{3n + 1} + 1} \quad \text{par hypoth\`ese de r\'ecurrence}$$

$$= \frac{\frac{1}{3n + 1}}{\frac{3n + 1}{3n + 1}}$$

$$= \frac{1}{3n + 1} \times \frac{3n + 1}{3n + 4}$$

$$= \frac{1}{3n + 4}$$

Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

Exercice 2: Soit (v_n) la suite définie par $\begin{cases} v_0 = 1 & u_1 = 8 \\ \forall n \in \mathbb{N}, \ v_{n+2} = 4(v_{n+1} - v_n) \end{cases}$

Montrer que pour tout $n \in \mathbb{N}$, $v_n = 2^n(3n+1)$.

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n) : v_n = 2^n (3n+1)$.

<u>Initialisation</u>: $2^0(3 \times 0 + 1) = 1 = u_0$ et $2^1(3 \times 1 + 1) = 8$ donc $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.

 $\underline{\text{H\'er\'edit\'e}}$: Soit $n \in \mathbb{N}$ fixé. Supposons que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies et montrons que $\mathcal{P}(n+2)$ est vraie, c'est-à-dire que $v_{n+2} = 2^{n+2}(3(n+2)+1) = 2^{n+2}(3n+7)$.

$$\begin{aligned} v_{n+2} &= 4(v_{n+1} - v_n) \\ &= 4\left(2^{n+1}(3(n+1)+1) - 2^n(3n+1)\right) \quad \text{par hypothèse de récurrence} \\ &= 2^2 \times 2^n \left(2(3n+4) - 3n - 1\right) \\ &= 2^{n+2}(6n+8-3n-1) \\ &= 2^{n+2}(3n+7) \end{aligned}$$

Conclusion : D'après le principe de récurrence double, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.