TD02 - Correction

Exercice 1:

1. (a)
$$\frac{248}{1024} = \frac{31}{128}$$

(b)
$$\frac{1}{2} - \frac{1}{3} + \frac{1}{4} = \frac{5}{12}$$

(c)
$$2 - \frac{13}{7} + \left(1 + \frac{5}{2}\right) = \frac{51}{14}$$

2. (a)
$$(a^3)^2 \times a^{-4} = a^2$$

(b)
$$a^2b^{-3}(ab)^4 = a^6b$$

(c)
$$2^{23} \times 0, 5^{24} = \frac{1}{2}$$

(d)
$$\left(\frac{2}{3}\right)^{11} \times \left(\frac{3}{2}\right)^{10} = \frac{2}{3}$$

(e)
$$\frac{a^3b^{-2}}{a^4b^{-3}} = \frac{b}{a}$$

3. (a)
$$\sqrt{12} = 2\sqrt{3}$$

(b)
$$\sqrt{27} = 3\sqrt{3}$$

(c)
$$\sqrt{48} = 4\sqrt{3}$$

(d)
$$\sqrt{98} = 7\sqrt{2}$$

(d)
$$\left(\frac{2}{3} - \frac{3}{4}\right) + 3\left(\frac{4}{5} - \frac{5}{6}\right) = -\frac{11}{60}$$
 (f) $\frac{\frac{1}{2} + \frac{1}{3}}{\frac{5}{6} \times \frac{3}{4}} = \frac{4}{3}$

(e)
$$\frac{\left(\frac{1}{2} + \frac{5}{3}\right) \times \left(3 + \frac{7}{4}\right)}{\left(\frac{1}{2} - \frac{5}{6}\right)} = -\frac{247}{8}$$
 (g) $\frac{\frac{2}{3} + \frac{3}{4} - \frac{4}{5} \times \frac{3}{4}}{\frac{2}{5} \times \frac{4}{3} + \frac{1}{3}} = \frac{49}{52}$.

(f)
$$\frac{8^{73} \times 3^{-31}}{9^{15} \times 2^{220}} = \frac{1}{2 \times 3^{61}}$$

(g)
$$\frac{(3^5 \times 2^{-2})^2}{(9^{-1} \times 2^3)^3} = \frac{3^{16}}{2^{13}}$$
.

(h)
$$\frac{9^3 \times 27^2 \times 75}{5^2 \times 3^4} = 3^9$$
.

$$(i) \ \ \frac{7^3 \times 10^{-3} \times 0.6^2}{12^2 \times 10^4 \times 5} = 5 \cdot 7^3 \cdot 10^{-11}. \qquad (n) \ \ \frac{4^{-2} \times 8^3}{16^3} = 2^{-7}.$$

(e)
$$\sqrt{242} = 11\sqrt{2}$$

(f)
$$5\sqrt{27} - 2\sqrt{48} = -5\sqrt{3}$$

(g)
$$\frac{\sqrt{81}}{\sqrt{242}} \times \sqrt{\frac{98}{25}}$$

$$\text{(f)} \ \frac{6 \times 3}{9^{15} \times 2^{220}} = \frac{1}{2 \times 3^{61}}$$

(j)
$$\frac{0.03 \times 5^3 \times 10^4}{6 \times 50^2 \times 10^3} = 25 \cdot 10^{-4}$$
.

(k)
$$(7^3)^2 + 49^3 = 2 \cdot 7^6$$

(l)
$$\frac{3^5 \times 81}{9^{-3}} = 3^{15}$$

(m)
$$81^5 \times (3^{-2})^{-5} \times \frac{1}{9} = 3^{28}$$

(n)
$$\frac{4^{-2} \times 8^3}{16^3} = 2^{-7}$$
.

(h)
$$\frac{3}{\sqrt{7}} = \frac{63}{55}$$

(i)
$$\frac{2}{3\sqrt{5}-1} = \frac{3\sqrt{5}+1}{22}$$

(g)
$$\frac{\sqrt{81}}{\sqrt{242}} \times \sqrt{\frac{98}{25}}$$

4. (a)
$$0, 1^5 \cdot (-0,001^2) \cdot 0, 01^2 = -10^{-1} = \frac{63}{1920} = 3,28125 \cdot 10^{-5}$$

(b) $\frac{9 \times 14 \times 11^2}{15 \times 21 \times 22} = 2,2.$ (f) $\frac{49}{21}(impossible).$

(a)
$$0.00504 = 5.04 = 10^{-1}$$

(c)
$$0,00594 = 5,94 \cdot 10^{-3}$$

(d)
$$124\,000\,000 = 1,24\cdot10^8$$

$$\frac{63}{920} = 3,28125 \cdot 10^{-5}$$
 (h) $-9 \times 10^{-8} - 4,2 \times 10^{-8} + 9,4 \times 10^{-8}$

$$(x)$$
 35 \times 106 \pm 3 \times 106 \pm 2 0 \times 106

(g)
$$35 \times 10^{6} + 3 \times 10^{6} + 2,9 \times 10^{6}$$

(g)
$$35 \times 10^6 + 3 \times 10^6 + 2,9 \times 10^6 \neq i$$
 $-0,8 \times 10^7 + 0,05 \times 10^7 + 2,32 \times 4,09 \cdot 10^7$. $10^7 = 1,57 \cdot 10^7$.

$$10^7 = 1,57 \cdot 10^7$$

Exercice 2:

1.
$$A = \frac{14b^4x}{15a^2x} \cdot \frac{5ay}{7b^3y} = \frac{2b}{3a}$$

2.
$$B = \frac{2x^3 - 4x^2 + 2x}{6x^2 - 6} = \frac{x(x-1)}{3(x+1)}$$

1.
$$A = \frac{14b^4x}{15a^2x} \cdot \frac{5ay}{7b^3y} = \frac{2b}{3a}$$

2. $B = \frac{2x^3 - 4x^2 + 2x}{6x^2 - 6} = \frac{x(x-1)}{3(x+1)}$
3. $C = \frac{\frac{x^2 + 2x - 15}{x^2 - 6x + 9}}{\frac{x^2 + 2x - 15}{x^2 + x}} = \frac{x(x+1)}{x - 3}$

4.
$$D = \frac{2x+5}{x^2+5x-36x} - \frac{1}{x-4} = \frac{1}{x+9}$$

5.
$$E = \frac{21a^2b + 7a^3b^2}{7a^3b^2} = \frac{3+ab}{ab}$$

6.
$$F = \frac{2x^2 + 4x}{x+2} = 2x$$

7.
$$G = \frac{x^2 + x}{2x} = \frac{x+1}{2}$$

8.
$$H = \frac{4\sqrt{3}+10\sqrt{2}}{2} - \sqrt{12} + \sqrt{32} - \frac{5}{2}\sqrt{2} = \frac{13}{2}\sqrt{2}$$

Exercice 3:

1. (a)
$$I = [-13/8; -3/2]$$
.

(b)
$$I = \emptyset$$

(c)
$$I =]-\infty; -2[\cup]-2; +\infty[$$

(d)
$$I = \mathbb{R}$$

2. (a)
$$A = [-2, 5]$$
 Intervalle

(b)
$$A =]1; 3[$$
 Intervalle

(c)
$$A = \mathbb{R}$$
 Intervalle

(d)
$$A = [-5, 7]$$
 Intervalle

(e)
$$A = [3; 2]$$
 Intervalle

(f) Ce n'est pas un intervalle

Exercice 4:

1.
$$A = \frac{x+1}{\sqrt{4x+4}} - (\sqrt{3x+3})^3 = \sqrt{x+1} \left(\frac{1}{2} - 3\sqrt{3}(x+1)\right)$$
4. $D = 4(x^2+x+2)^2 - (2x^2-1)^2 = (2x+5)(4x^2+x+1)$

2.
$$B = \sqrt{9(x-1)} - 2\sqrt{x-1} = \sqrt{x-1}$$

5.
$$E = 2(x^2 + 3)^2 - (3 + \sqrt{2}x^2)^2 = 3(\sqrt{2} - 1)(2\sqrt{2}x^2 + \sqrt{2}x^2)^2$$

3.
$$C = (2x^2 - 1)^2 - (2x^2 + x)^2 = -(x+1)(4x^2 + x - 1)$$
 $3(\sqrt{2} + 1)$

6.
$$F = \frac{(x+1)^2}{(x-1)^2} - 1 = \frac{4x}{(x-1)^2}$$

8.
$$I = \frac{(8x+4)(4x+2)}{2} = 4(2x+1)^2$$

7.
$$G = 3 \frac{(x+1)^2}{(\frac{\sqrt{3}}{2}x-1)^2} - 4 = \frac{(\sqrt{3}+2)(\sqrt{3}x+\sqrt{3}-2)}{(\frac{\sqrt{3}}{2}x-1)^2}$$

Exercice 5:

1. Soit $x \in \mathbb{R}$,

$$6x + 1 = -x + 4 \iff 7x = 3 \tag{1}$$

$$\iff x = \frac{3}{7} \tag{2}$$

L'équation a une unique solution : $\frac{3}{7}$.

2. Attention quand on divise deux fractions entre elles et quand on divise par un nombre négatif dans une inéquation.

Soit $x \in \mathbb{R}$,

$$-\frac{1}{4}x + 1 \ge \frac{3}{8}x + \frac{1}{2} \iff -\frac{5}{8}x \ge -\frac{1}{2} \tag{3}$$

$$\iff x \le \frac{4}{5}$$
 (4)

On trouve que l'ensemble des solutions est $\left]-\infty, \frac{4}{5}\right]$.

3. On se ramène à une équation produit nul en faisant passer le second membre dans le premier : l'équation est équivalente à (5-x)((2x+1)+(x+1))=0. Les solutions sont $-\frac{2}{3}$ et 5.

4.

Exercice 6:

1. Soit $x \in \mathbb{R}$,

$$|x| = 2 \iff x = -2 \text{ ou } x = 2$$

Les solutions sont -2 et 2.

- 2. Il n'y a pas de solution car pour tout $x \in \mathbb{R}$, on a $|x| \ge 0$.
- 3. Soit $x \in \mathbb{R}$,

$$|2x+4| = 0 \iff 2x+4 = 0$$
 (5)

$$\iff x = -2$$
 (6)

Il y a une unique solution : -2.

4. Soit $x \in \mathbb{R}$,

$$|-2x+1| = 1 \iff -2x+1 = -1 \text{ ou } -2x+1 = 1$$
 (7)

$$\iff x = 1 \text{ ou } x = 0.$$
 (8)

Il y a deux solutions : 0 et 1.

5. Soit $x \in \mathbb{R}$

On va raisonner par disjonction de cas. On étudie le signe de 4x + 1 et de 2x - 3 pour enlever les valeurs absolues

x	$-\infty$		$-\frac{1}{4}$		$\frac{3}{2}$		$+\infty$
4x + 1		_	0	+		+	
2x-3		_		_	0	+	

1er cas : $x \in \left] - \infty; -\frac{1}{4} \right] \bigcup \left[\frac{3}{2}; + \infty \right[$

L'équation devient $4x + 1 = 2x - 3 \iff x = -2$.

2eme cas : $x \in]-\frac{1}{4}$; $\frac{3}{2}[$

L'équation devient $4x + 1 = -(2x - 3) \iff x = \frac{1}{3}$.

On trouve deux solutions : -2 et $\frac{1}{3}$.

Dans la suite, la redaction n'est pas détaillée et est donc insuffisante. Les résultats sont donnés à titre indicatif.

- 6. L'ensemble des solutions est l'ensemble vide.
- 7. L'ensemble des solutions est]-5,5[.
- 8. L'ensemble des solutions est $]-\infty,-7]\cup[7,+\infty[$.
- 9. L'ensemble des solutions est]-3,1[.
- 10. L'ensemble des solutions est $]-\infty, -3[\cup]-2, +\infty[$.

Exercice 7:

1. Soit $x \in \mathbb{R}$, On résout l'équation $x^2 - 4x + 2 = 0$. Le discriminant est égale à 8. Donc l'équation a deux solutions $2 - \sqrt{2}$ et $2 + \sqrt{2}$.

L'ensemble des solutions de l'inéquation est : $|2 - \sqrt{2}; 2 + \sqrt{2}|$.

2. Soit $x \in \mathbb{R}$,

Comme $x^2 - 3x + 2 = (x - 1)(x - 2)$, l'équation a deux solutions 1 et 2

3. Soit $x \in \mathbb{R}$,

$$x^{2} + x + 1 = 1 \iff x(x+1) = 0.$$

L'ensemble des solution est $\{-1;0\}$

4. Soit $x \in \mathbb{R}$,

$$2x^2 - 3x + 1 = 0 \iff 2(x - 1)(x - \frac{1}{2}) = 0.$$

L'ensemble des solution est $\left\{\frac{1}{2};1\right\}$

5. Soit $x \in \mathbb{R}$, $-2x^2 + 7x - 5 = -(x - 1)\left(x - \frac{5}{2}\right)$

Les solutions sont 1 et $\frac{5}{2}$ (équation du second degré).

 $6. \ \, \text{On utilise les identités remarquables pour se ramener à <math display="inline">\ \, \text{une étude de signes}:$

Soit $x \in \mathbb{R}$,

$$(x^2 + 2x + 1)^2 < 16 \iff (x^2 + 2x + 1)^2 - 4^2 < 0, \qquad a^2 - b^2 = (a + b)(a - b))$$
 (9)

$$\iff (x^2 + 2x - 3)(x^2 + 2x + 5) < 0 \tag{10}$$

$$\iff x^2 + 2x - 3 < 0 \tag{11}$$

car $x^2 + 2x + 5 > 0$ pour tout $x \in \mathbb{R}$ (car son discriminant est strictement négatif). On trouve que l'ensemble des solutions de l'inéquation est]-3,1[.

Dans la suite, la redaction n'est pas détaillée et est donc insuffisante. Il faudrait <u>entre autre chose</u> déterminer l'ensemble sur lequel on peut résoudre ces équations et inéquations. Les résultats sont donnés à titre indicatif.

7. Il faut déterminer le signe d'un quotient donc on utilise un tableau de signes. Comme $\forall x \in \mathbb{R}, x^2 + 10x + 25 = (x+5)^2 \ge 0$, le signe du quotient est celui du dénominateur. Les racines du dénominateur sont $-\frac{1}{2}$ et -3.

L'ensemble des solutions de l'inéquation est donc $]-\infty,-3[\cup]-\frac{1}{2},+\infty[$.

8. On se ramène à une étude de signe en faisant passer le « $1 \gg$ dans le membre de gauche et en réduisant au même dénominateur :

$$\frac{4x^2 - 15x - 3}{2x^2 - 5x - 3} \geqslant 1 \iff \cdots \iff \frac{2x(x - 5)}{2x^2 - 5x - 3} \geqslant 0$$

On a le tableau de signes suivant :

x	$-\infty$		$-\frac{3}{2}$		0		3		5		$+\infty$
2x		_		_	0	+		+		+	
x-5		_		_		_		_	0	+	
$2x^2 - 5x - 3$		+	0	_		_	0	+		+	
$\frac{2x(x-5)}{2x^2 - 5x - 3}$		+		_	0	+		_	0	+	

et donc l'ensemble des solutions de l'inéquation est $\left]-\infty,-\frac{3}{2}\right[\cup[0,3[\cup[5,+\infty[...]]])$

- 9. On passe l'un des membres de l'inégalité dans l'autre membre et on réduit au même dénominateur pour se ramener à une étude de signes. On trouve que l'inéquation proposée est équivalente à $\frac{x^2 7x + 12}{(x-1)(x-2)} \le 0$. Comme on veut faire une étude de signe, on ne développe pas le dénominateur. On trouve que l'ensemble des solutions de l'inéquation est $]1,2[\cup[3,4]$ (attention aux valeurs interdites!).
- 10. En faisant passer le membre de droite dans le membre de gauche et en réduisant au même dénominateur, on trouve que

$$x + \frac{2}{x} \leqslant 4 \iff \frac{x^2 - 4x + 2}{x} \leqslant 0$$

On fait un tableau de signes en cherchant au préalable les racines du trinôme au numérateur. On trouve que l'ensemble des solutions de l'inéquation est $]-\infty,0[\cup[2-\sqrt{2},2+\sqrt{2}].$

Exercice 8:

- 1. On résout l'équation en faisant le changement de variable $X=x^2$. On se ramène à une équation du second degré admettant pour solution X=-1 ou $X=\frac{1}{2}$. Les solutions de l'équation initiale sont $-\frac{1}{\sqrt{2}}$ et $\frac{1}{\sqrt{2}}$.
- 2. Les solutions sont -1, 1, $-\sqrt{2}$ et $\sqrt{2}$.
- 3. On résout l'inéquation sur \mathbb{R}^+ car la racine carrée est définie sur \mathbb{R}^+ . Soit $x \in \mathbb{R}^+$, on fait le changement de variable $X = \sqrt{x}$. On a alors :

$$8x - 18\sqrt{x} - 11 \ge 0 \Leftrightarrow 8X^2 - 18X - 11 \ge 0$$

On calcule le discriminant du polynome du second degré $\Delta=676=26^2$. Donc le polynôme admet deux racines : $-\frac{1}{2}$ et $\frac{11}{4}$. Donc :

$$8X^{2} - 18X - 11 \ge 0 \Leftrightarrow X \in \left] -\infty; -\frac{1}{2} \right] \cup \left[\frac{11}{4}; +\infty \right[$$

$$\Leftrightarrow X \in \left[\frac{11}{4}; +\infty \right[\text{ car } X \ge 0$$

$$\Leftrightarrow X \ge \frac{11}{4}$$

$$\Leftrightarrow \sqrt{x} \ge \frac{11}{4}$$

$$\Leftrightarrow x \ge \frac{121}{16} \text{ car la fonction } x \mapsto x^{2} \text{ est croissante sur } \mathbb{R}^{+}.$$

Donc l'ensemble des solutions de l'inéquation (en x) est $\left[\frac{121}{16}, +\infty\right[$.

Exercice 9:

On note respectivement A, B, C, D, E et F ces ensembles.

- 1. On a $\sup(A) = \max(A) = 2$ et $\inf(A) = \min(A) = 0$.
- 2. Cet ensemble n'est pas majoré ni minoré. Il n'admet donc pas de borne inférieure ni de borne supérieure (et donc pas de maximum et de minimum).
- 3. On a $\max(C) = \sup(C) = 4$. On a $\inf(C) = 3$ mais C n'admet pas de minimum.
- 4. On peut écrire plus simplement l'ensemble $D:D=]-\infty,-1[\cup]1,+\infty[$. Cet ensemble n'est ni majoré, ni minoré: les nombres $\max(D)$, $\min(D)$, $\sup(D)$ et $\inf(D)$ n'existent pas.
- 5. On a $E =]1, +\infty[$. L'ensemble E n'est pas majoré donc $\max(E)$ et $\sup(E)$ n'existent pas. On a $\inf(E) = 1$ et $\min(E)$ n'existe pas.
- 6. Il est utile de représenter géométriquement l'ensemble F. Cela permet de voir que $F = \mathbb{R}^*$ ce que l'on démontre ensuite par double inclusion. On se retrouve dans la même situation qu'à la question 2.

Exercice 10:

- 1. En encadrant $(-1)^n$ et $\frac{1}{n+1}$, on trouve que A est majoré par 2 et est minoré par -1. Donc A est borné.
- 2. On utilise la propriété de la borne supérieure/inférieure d'un sous-ensemble de \mathbb{R} majoré/minoré.
- 3. L'ensemble A possède un plus grand élément qui est 2 (obtenu en prenant n = 0). Donc $\max(A) = \sup(A) = 2$. On a $\inf(A) = -1$ et on montre en raisonnant par l'absurde que cette borne inférieure n'est pas atteinte. Donc A n'a pas de plus petit élément.

Exercice 11:

- 1. L'ensemble des solutions de (S_1) est $\{\left(\frac{3}{4}, \frac{1}{4}\right)\}$.
- 2. L'ensemble des solutions de (S_2) est $\{\left(\frac{7}{4}, \frac{1}{2}\right)\}$.
- 3. L'ensemble des solutions de (S_3) est \emptyset .
- 4. L'ensemble des solutions de (S_2) est $\{(1,-1,5)\}$.
- 5. L'ensemble des solutions de (S_2) est $\{(1, -c, c) | c \in \mathbb{R}\}.$
- 6. L'ensemble des solutions de (S_2) est $\{(-2,4,-3)\}$.

Exercice 12: Soit $(a,b) \in \mathbb{R}$. On a, par définition

$$\max(a, b) = \begin{cases} a & \text{si } a \geqslant b \\ b & \text{si } a < b \end{cases}$$

Il faut étudier $\frac{1}{2}(a+b+|a-b|)$ quand $a \ge b$ et quand a < b.

Exercice 13:

On a

$$\frac{n^3}{n+1} = \frac{n^3 + n^2 - n^2}{n+1}$$

$$= \frac{n^3 + n^2}{n+1} - \frac{n^2}{n+1}$$

$$= n^2 - \frac{n^2 + n - n - 1 + 1}{n+1}$$

$$= n^2 - \frac{n^2 + n}{n+1} + \frac{n+1}{n+1} - \frac{1}{n+1}$$

$$= n^2 - n + 1 - \frac{1}{n+1}$$

Ainsi

$$\left| \frac{n^3}{n+1} \right| = \left| n^2 - n + 1 - \frac{1}{n+1} \right| = n^2 - n + 1 + \left| -\frac{1}{n+1} \right| = n^2 - n$$

Exercice 14:

Soit $(x, y) \in \mathbb{R}^2$ et $n \in \mathbb{N}^*$.

On a $n|x| \leq nx$. Ainsi n[x] est un entier inférieur à nx, d'où $n[x] \leq [nx]$.

De plus on sait que x < |x| + 1, d'où nx < n|x| + n.

Ainsi $\lfloor nx \rfloor - n \lfloor x \rfloor < n$. Or $\lfloor nx \rfloor - n \lfloor x \rfloor$ est un entier et on rappelle que, si k est un entier alors l'inégalité k < n est équivalente à $k \le n-1$. On a donc $\lfloor nx \rfloor - n \rfloor x \rfloor \le n-1$.

Exercice 15:

1. Soit $x \in \mathbb{R}$,

$$x+2 \ge 0 \iff x \ge -2$$

Le domaine de validité de l'équation est $[-2, +\infty[$ (car la fonction racine carrée est définie sur \mathbb{R}_+ .) Soit $x \in [-2, +\infty[$.

- \star 1er cas : $x \in [-2, 4]$. Alors x 4 < 0 et comme $\sqrt{x + 2} \ge 0$, l'équation n'a pas de solution dans [-2, 4]
- ★ 2 ème cas : $x \in [4, +\infty[$. Alors $x 4 \ge 0$ et $\sqrt{x + 2} \ge 0$ donc comme la fonction carrée est strictement croissante sur \mathbb{R}_+ , on a

$$\sqrt{x+2} = x-4 \iff x+2 = (x-4)^2 \iff x^2-9x+14=0$$

Cette équation du second degré a deux solutions réelles : 2 et 7. Or, x appartient à l'intervalle $[4, +\infty[$ donc x = 7.

Conclusion : l'équation proposée admet une unique solution dans \mathbb{R} qui est x=7.

2. Le domaine de validité de l'équation est $[1, +\infty[$. Soit $x \in [1, +\infty[$. On multiplie l'équation par la forme conjuguée du terme de gauche. On raisonne alors par implication (on pourrait raisonner par équivalence en montrant que pour tout $x \in [1, +\infty[$, $\sqrt{x-1} - \sqrt{x+4} \neq 0)$.

$$\sqrt{x-1} + \sqrt{x+4} = \sqrt{5} \Rightarrow \left(\sqrt{x-1} + \sqrt{x+4}\right) \left(\sqrt{x-1} - \sqrt{x+4}\right) = \sqrt{5} \left(\sqrt{x-1} - \sqrt{x+4}\right)$$

$$\Rightarrow x - 1 - (x+4) = \sqrt{5} \left(\sqrt{x-1} - \sqrt{x+4}\right)$$

$$\Rightarrow -5 = \sqrt{5} \left(\sqrt{x-1} - \sqrt{x+4}\right)$$

$$\Rightarrow -\sqrt{5} = \left(\sqrt{x-1} - \sqrt{x+4}\right)$$

$$\Rightarrow \sqrt{5} = \left(\sqrt{x+4} - \sqrt{x-1}\right)$$

On a donc:

$$\sqrt{x-1} + \sqrt{x+4} = \sqrt{5} \Rightarrow \begin{cases} \sqrt{x-1} + \sqrt{x+4} = \sqrt{5} \\ \sqrt{x+4} - \sqrt{x-1} = \sqrt{5} \end{cases}$$

En additionnant les deux lignes on obtient :

$$2\sqrt{x+4} = 2\sqrt{5}$$

donc $\sqrt{x+4} = \sqrt{5}$ donc x+4=5 donc x=1. Comme on a raisonné par implication il faut vérifier que la solution convient. On a bien :

$$\sqrt{1-1} + \sqrt{1+4} = 0 + \sqrt{5} = \sqrt{5}$$

Donc l'ensemble des solutions est $S = \{1\}$.

- 3. Le domaine de validité de l'équation est $]-\infty,-1] \cup [2,+\infty[$ et il faut que $3x+2 \ge 0$. En élevant au carré, on obtient une équation du second degré qui n'a pas de solution. Donc l'équation de départ n'a pas de solution dans \mathbb{R}
- 4. Le domaine de validité de l'inéquation est $[-1, +\infty[$ et il faut que 2x 3 > 0 (à cause de la racine carrée). On élève au carré (on raisonne par équivalence). On trouve que l'ensemble des solutions de l'inéquation est $\left[\frac{13+\sqrt{41}}{8}, +\infty\right[$.
- 5. Le domaine de validité de l'inéquation est $]-\infty,-4]\cup[5,+\infty[$. On trouve que l'ensemble de solutions de l'inéquation est $]-\infty,-4]$.
- 6. Le domaine de validité de l'équation est $\left[\frac{1}{4}, +\infty\right[$. L'ensemble de solutions est $\left[\frac{2}{3}, +\infty\right]$.
- 7. L'inéquation n'a pas de solution.

Exercice 16:

- 1. On commence par étudier le signe de 2x + 3 et de 2x 1 suivant les valeurs de x. On résout ensuite l'équation en étudiant plusieurs cas. On trouve que l'ensemble de solutions est $\{-6, 0, 2\}$.
- 2. On commence par étudier le signe de 2x 3 et de 3x + 5 suivant les valeurs de x puis on traite plusieurs cas pour résoudre l'inéquation. On trouve que l'ensemble des solutions est

$$\left]-\infty,-8\right[\cup\left]-\frac{2}{5},+\infty\right[$$

- 3. On utilise le fait que $\sqrt{(3x+5)^2} = |3x+5|$. On trouve que l'équation n'a pas de solution.
- 4. Soit $x \in \mathbb{R}$, on note (E) l'équation |2x-1|-1=|x+3|On a les équivalences suivantes,

$$2x - 1 > 0 \iff x > \frac{1}{2} \tag{12}$$

$$x+3>0 \iff x>-3 \tag{13}$$

Nous allons distinguer les cas.

1er cas : si $x \ge \frac{1}{2}$

alors l'équation (E) devient 2x - 1 - 1 = x + 3

Cette équation à une solution dans $\left[\frac{1}{2}; +\infty\right[: x = 5.$

2eme cas : si $-3 \le x < \frac{1}{2}$

alors l'équation (E) devient -2x + 1 - 1 = x + 3

la solution de l'équation dans $[-3; \frac{1}{2}[$ est -1.

3eme cas : si x < -3

alors l'équation (E) devient -2x + 1 - 1 = -x - 3

Cette équation n' a pas de solution dans $]-\infty;-3]$. En effet la seule solution dans $\mathbb R$ de cette équation est $3 \notin]-\infty;-3]$.

Conclusion

L'ensemble des solutions de l'inéquation (E) est $S = \{5; -1\}$

5. L'inéquation est valide si et seulement si $x + 3 \neq 0$. On cherche donc des solutions sur $\mathbb{R} \setminus \{-3\}$.

Soit
$$x \in \mathbb{R} \setminus \{-3\}$$
,

$$\left|\frac{x-2}{x+3}\right| > 1 \quad \Leftrightarrow \quad \frac{|x-2|}{|x+3|} < \left| > 1 \right|$$
$$\Leftrightarrow \quad |x-2| > |x+3| \text{ car } |x+3| > 0$$

Distinguons l'écriture de cette inégalité en fonction de l'intervalle considéré.

x	$-\infty$	-3	6 2	2	$+\infty$
x-2	-x+2		-x+2	x-2	
x + 3	-x-3	0	x+3	x+3	
x-2 > x+3	-x+2 > -x	-3 $-x$	+2 > x+3	x - 2 > x +	- 3

Ainsi:

- * Soit $x \in]-\infty, -3[$, $|x-2| > |x+3| \Leftrightarrow -x+2 > -x-3 \Leftrightarrow 2 > -3$, toujours vrai donc l'ensemble $]-\infty, -3[$ est solution.
- ★ Soit $x \in]-3,2[$, $|x-2| > |x+3| \Leftrightarrow -x+2 > x+3 \Leftrightarrow x < \frac{-1}{2}$, donc l'ensemble $]-3,\frac{-1}{2}[$ est solution.
- * Soit $x \in [2, +\infty[, |x-2| > |x+3| \Leftrightarrow x-2 > x+3 \Leftrightarrow -2 > 3, impossible.$

Conclusion : L'ensemble des solutions est $]-\infty, \frac{-1}{2}[\setminus\{-3\}]$

6.
$$x^2 - 3x + 2 = (x - 1)(x - 2)$$
 et $2x^2 - 2 = 2(x - 1)(x + 1)$

Distinguons l'écriture de cette inégalité en fonction de l'intervalle considéré.

x	-∞ -	-1	1	$2 + \infty$
$ x^2 - 3x + 2 $	$x^2 - 3x + 2$	$x^2 - 3x + 2$	$0 -x^2 + 3x - 2$	$0 x^2 - 3x + 2$
$ 2x^2 - 2 $	$2x^2 - 2$	$0 \qquad -2x^2 + 2$	$0 2x^2 - 2$	$2x^2 - 2$

 $\star \ \mathrm{Soit} \ x \in]-\infty,-1],$

 $|x^2 - 3x + 2| \le |2x^2 - 2| \Leftrightarrow x^2 - 3x + 2 \le 2x^2 - 2 \Leftrightarrow (x+4)(x-1) \ge 0 \Leftrightarrow x \in]-\infty, -4] \cup [1, +\infty[$ donc l'ensemble $]-\infty, -4]$ est solution.

- * Soit $x \in]-1,1]$, $|x^2-3x+2| \le |2x^2-2| \Leftrightarrow x^2-3x+2 \le -2x^2+2 \Leftrightarrow 3x(x-1) \le 0 \Leftrightarrow x \in [0,1]$, donc l'ensemble [0,1] est solution
- ★ Soit $x \in]1,2]$, $|x^2 3x + 2| \le |2x^2 2| \Leftrightarrow -x^2 + 3x 2 \le 2x^2 2 \Leftrightarrow 3x(x 1) \ge 0 \Leftrightarrow x \in]-\infty,0] \cup [1,+\infty[, donc l'ensemble]1,2] est solution.$
- * Soit $x \in]2, +\infty[$, $|x^2 3x + 2| \le |2x^2 2| \Leftrightarrow x^2 3x + 2 \le 2x^2 2 \Leftrightarrow (x+4)(x-1) \ge 0 \Leftrightarrow x \in]-\infty, -4] \cup [1, +\infty[$ donc l'ensemble $]2, +\infty[$ est solution.

Conclusion : L'ensemble des solutions est] $-\infty$, -4] \cup [0, $+\infty$ [

Exercice 17:

1. Il faut traîter à part le cas m=0 qui correspond à une équation du premier degré. Si $m \neq 0$, alors on a affaire à une équation du second degré de discriminant $\Delta_m = (m-3)^2(m+3)^2$ (en factorisant à l'aide des identités remarquables). On discute ensuite suivant les valeurs de m, c'est-à-dire suivant le signe de Δ_m . On trouve que l'ensemble des solutions est

$$S_m = \begin{cases} \{0\} & \text{si } m = 0\\ \{-1\} & \text{si } m = -3\\ \{1\} & \text{si } m = 3\\ \{\frac{3}{m}, \frac{m}{3}\} & \text{sinon} \end{cases}$$

2. Le discriminant vaut $\Delta_m = 4(m-1)(m+1)$. L'ensemble des solutions est

$$S_m = \begin{cases} \varnothing & \text{si } m \in]-1,1[\\ \{-1\} & \text{si } m = 1\\ \{1\} & \text{si } m = -1\\ \{-m - \sqrt{m^2 - 1}, -m + \sqrt{m^2 - 1}\} & \text{sinon} \end{cases}$$

3. On pose $X = e^x$ de manière à se ramener à une équation du second degré en X. Le discriminant vaut $\Delta_m = (1-m)(3m+1)$ puis on raisonne suivant le signe de Δ_m . On trouve que l'ensemble des solutions est

$$S_m = \begin{cases} \{0\} & \text{si } m \in \mathbb{R}_-\\ \{0, \ln(m)\} & \text{si } m \in \mathbb{R}_+^* \end{cases}$$

Exercice 18:

- 1. Penser à utiliser l'expression conjuguée et à encadrer $2\sqrt{n} = \sqrt{n} + \sqrt{n}$.
- 2. En sommant les inégalités, on trouve que la somme S dans la partie entière est telle que 198 < S < 199. Donc $\lfloor S \rfloor = 198$.