Corrigé du Devoir surveillé 1

Exercice 1 - Résolution d'(in)équations

1. Soit $x \in \mathbb{R}$. Alors :

$$|3x - 1| = 7 \iff 3x - 1 = -7 \text{ ou } 3x - 1 = 7$$

 $\iff 3x = -6 \text{ ou } 3x = 8$
 $\iff x = -2 \text{ ou } x = \frac{8}{3}$

L'ensemble des solutions de l'équation est :

$$S = \left\{-2; \frac{8}{3}\right\}$$

- 2. On sait que pour tout $y \in \mathbb{R}$, on a $|y| \ge 0$. L'inéquation proposé est toujours vraie. L'ensemble des solutions est $S = \mathbb{R}$
- 3. Soit $x \in \mathbb{R} \setminus \{\frac{1}{2}\}$. Alors:

$$\left| \frac{4x+5}{2x-1} \right| < 2 \iff -2 < \frac{4x+5}{2x-1} < 2$$

$$\iff -2 < \frac{4x+5}{2x-1} \text{ et } \frac{4x+5}{2x-1} < 2$$

$$\iff 0 < \frac{8x+3}{2x-1} \text{ et } \frac{7}{2x-1} < 0$$

• Résolution des inéquations $0 < \frac{8x+3}{2x-1}$ et $\frac{7}{2x-1} < 0$

x	-∞		$-\frac{3}{8}$		$\frac{1}{2}$		+∞
8x + 3		_	0	+		+	
2x-1		_		_	0	+	
$\frac{8x+3}{2x-1}$		+	0	_		+	
$\frac{7}{2x-1}$		_		_		+	

L'ensemble des solutions de l'inéquation est donc :

$$\boxed{\mathcal{S} = \left] - \infty \; ; \; -\frac{3}{8} \right[}$$

4. Soit $x \in \mathbb{R}$.

$$-3x + 4 > 0 \iff x < \frac{4}{3}$$
$$-5 + x > 0 \iff x > 5$$

Distinguons suivant les intervalles

x	$-\infty$		$\frac{4}{3}$		5		$+\infty$
-3x+4		-3x + 4	0	-(-3x+4)		-(-3x+4)	
-5+x		-(-5+x)		-(-5+x)	0	-5+x	

• premier cas :
$$x \in \left] -\infty, \frac{4}{3} \right]$$
,

• premier cas :
$$x \in \left] -\infty, \frac{4}{3} \right],$$

$$|-3x+4|+|-5+x| = 10 \quad \Leftrightarrow \quad -3x+4-(-5+x) = 10$$

$$\Leftrightarrow \quad -4x+9 = 10$$

$$\Leftrightarrow \quad x = -\frac{1}{4}$$

Dans ce cas la solution est $-\frac{1}{4}$ car $-\frac{1}{4} \le \frac{4}{3}$.

$$\star$$
 deuxième cas $x \in \left[\frac{4}{3}, 5\right]$,

$$|-3x+4|+|-5+x| = 10 \Leftrightarrow -(-3x+4)-(-5+x) = 10$$
$$\Leftrightarrow 2x+1 = 10$$
$$\Leftrightarrow x = \frac{9}{2}$$

Dans ce cas la solution est $\frac{9}{2}$ car $\frac{9}{2} \in \left[\frac{4}{3}, 5\right]$.

$$\star$$
 troisième cas : $x \in]5, +\infty[$,

$$|-3x+4|+|-5+x| = 10 \Leftrightarrow -(-3x+4)-5+x = 10$$
$$\Leftrightarrow 4x-9=10$$
$$\Leftrightarrow x = \frac{19}{4}$$

Comme $\frac{19}{4}$ < 5 il n'y a pas de solution dans ce cas.

L'ensemble des solutions de l'inéquation est donc :

$$\mathcal{S} = \left\{ -\frac{1}{4}, \frac{9}{2} \right\}$$

Exercice 2 - D'autres résolutions d'inéquations

 \star On cherche le domaine de validité \mathcal{D} de l'inéquation. Soit $x \in \mathbb{R}$. Alors :

$$x \in \mathcal{D} \iff 3x + 7 \geqslant 0 \iff x \geqslant -\frac{7}{3}$$

Donc
$$\mathcal{D} = \left[-\frac{7}{3}, +\infty \right]$$
.

- \star Soit $x \in \mathcal{D}$.

On a x-1 < 0 et $\sqrt{3x+7} \in \mathbb{R}_+$. Donc l'inéquation est toujours vraie. Dans ce cas, l'ensemble des solutions est $\mathcal{D} \cap]-\infty, 1[=[-\frac{7}{3},1[$

• deuxième cas : $x \ge 1$

Comme la fonction carrée est strictement croissante sur \mathbb{R}_+ et comme $x-1 \in \mathbb{R}_+$ et $\sqrt{3x+7} \in \mathbb{R}_+$, on a :

$$x - 1 \leqslant \sqrt{3x - 5} \iff (x - 1)^2 \leqslant 3x + 7$$
$$\iff x^2 - 2x + 1 \leqslant 3x + 7$$
$$\iff x^2 - 5x - 6 \leqslant 0$$

Le trinôme $x^2 - 5x - 6$ a un discriminant égal à 1 et ses racines sont -1 et 6. L'ensemble des solutions dans \mathbb{R} de l'inéquation $x^2 - 5x + 6 \ge 0$ est donc [-1, 6]. Dans ce cas, l'ensemble des solutions est $[-1, 6] \cap [1, +\infty[= [1, 6]]$

2

Par conséquent, l'ensemble des solutions de l'inéquation initiale est $\left[-\frac{7}{3},1[\cup[1,6]=[-\frac{7}{3},6[$

2. **Domaine de validité :** soit $x \in \mathbb{R}$, l'équation est valide si et seulement si $x^2 + x - 2 \neq 0$. Le discriminant du trinôme $x^2 + x - 2$ est 9. L'équation $x^2 + x - 2 = 0$ a deux solutions 1 et -2. Le domaine de validité de l'équation est : $\mathcal{D} = \mathbb{R} \setminus \{-2 ; 1 \}$.

Soit $x \in \mathcal{D}$,

$$\frac{2x^2 + 3x}{x^2 + x - 2} > 2 \iff \frac{2x^2 + 3x}{x^2 + x - 2} - 2 > 0$$

$$\iff \frac{2x^2 + 3x}{x^2 + x - 2} - \frac{2x^2 + 2x - 4}{x^2 + x - 2} > 0$$

$$\iff \frac{x + 4}{x^2 + x - 2} > 0$$

Effectuons un tableau de signe afin de résoudre cette inégalité.

x	$-\infty$		-4		-2		1		$+\infty$
x+4		_	0	+		+		+	
$x^2 + x - 2$		+		+	0	_	0	+	
$\frac{2x^2 + 3x}{x^2 + x - 2}$		_	0	+		_		+	

Conclusion : L'ensemble des solutions de l'inéquation est S =]-4; $-2[\bigcup]1$; $+\infty[$.

Exercice 3 - Une première suite

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$: " $u_n = \frac{3+6n}{3+2n}$ ".

Initialisation : Montrons que $\mathcal{P}(0)$ est vraie.

On a
$$\frac{3+6\times0}{3+2\times0}=1=u_0$$
 donc $\mathcal{P}(0)$ est vraie.

Hérédité : Soit $n \in \mathbb{N}$ fixé. On suppose que $\mathcal{P}(n)$ est vraie et on montre que $\mathcal{P}(n+1)$ est vraie, i.e que $u_{n+1} = \frac{3+6(n+1)}{3+2(n+1)} = \frac{3+6n+6}{3+2n+2} = \frac{9+6n}{5+2n}$.

$$u_{n+1} = \frac{9}{6 - u_n} \quad \text{par d\'efinition de la suite}$$

$$= \frac{9}{6 - \frac{3+6n}{3+2n}} \quad \text{par hypoth\`ese de r\'ecurrence}$$

$$= \frac{9}{\frac{18+12n-3-6n}{3+2n}}$$

$$= \frac{9}{\frac{15+6n}{3+2n}}$$

$$= \frac{9(3+2n)}{15+6n}$$

$$= \frac{3\times 3(3+2n)}{3(5+2n)}$$

$$= \frac{9+6n}{5+2n}$$

Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

Exercice 4 - Une deuxième suite

Pour tout $n \in \mathbb{N}$, soit $\mathcal{P}(n)$: " $x_n = 3 \times 2^n - 1$ ".

Initialisation : Montrons que $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.

On a $3 \times 2^0 - 1 = 3 - 1 = 2 = x_0$ et $3 \times 2^1 - 1 = 6 - 1 = 5 = x_1$ donc $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.

Hérédité : Soit $n \in \mathbb{N}$ fixé. On suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies et on montre que $\mathcal{P}(n+2)$ est vraie, i.e que $x_{n+2} = 3 \times 2^{n+2} - 1$.

On a:

$$x_{n+2} = 3x_{n+1} - 2x_n$$
 par définition de la suite
$$= 3\left(3 \times 2^{n+1} - 1\right) - 2\left(3 \times 2^n - 1\right)$$
 par hypothèse de récurrence
$$= 9 \times 2^{n+1} - 3 - 3 \times 2^{n+1} + 2$$

$$= 6 \times 2^{n+1} - 1$$

$$= 3 \times 2 \times 2^{n+1} - 1$$

$$= 3 \times 2^{n+2} - 1$$

Donc $\mathcal{P}(n+2)$ est vraie.

Conclusion : D'après le principe de récurrence double, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

Exercice 5 - Le flocon de Von Koch

1. On considère un triangle équilatéral ABC de côté a et on note H le point d'intersection de la hauteur issue de A et de la droite (BC).

Le triangle AHC est rectangle en C. D'après le théorème de Pythagore,

$$AH^2 = HC^2 - AC^2 = a^2 - \left(\frac{a}{2}\right)^2 = a^2 - \frac{a^2}{4} = \frac{3}{4}a^2.$$

Ainsi,
$$AH = a\frac{\sqrt{3}}{2}$$
.

Donc l'aire de
$$ABC$$
 est $\frac{\text{base} \times \text{hauteur}}{2} = \frac{a \times a \frac{\sqrt{3}}{2}}{2} = a^2 \frac{\sqrt{3}}{4}$.

2. P_1 est un triangle équilatéral de côté 1 donc l'aire de P_1 est $A_1 = \frac{\sqrt{3}}{4}$.

L'aire de P_2 est l'aire de P_1 à laquelle on rajoute l'aire de 3 triangles équilatéraux de côté $\frac{1}{3}$. Donc

$$A_2 = A_1 + 3 \times \left(\frac{1}{3}\right)^2 \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{4} + \frac{3}{9} \times \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{4} + \frac{1}{3} \times \frac{\sqrt{3}}{4} = \frac{4}{3} \times \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{3}$$

3. Pour tout $n \in \mathbb{N}^*$, soit $\mathcal{P}(n)$: " $A_n = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^{n-1}\right)$ ".

Initialisation : Montrons que $\mathcal{P}(1)$ est vraie.

$$\frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9} \right)^{1-1} \right) = \frac{\sqrt{3}}{4} = A_1 \text{ donc } \mathcal{P}(1) \text{ est vraie.}$$

Hérédité : Soit $n \in \mathbb{N}$ fixé. On suppose que $\mathcal{P}(n)$ est vraie et on montre que $\mathcal{P}(n+1)$ est vraie, i.e que $\sqrt{3} = 3\sqrt{3}$ (4\) n

4

$$A_{n+1} = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^n\right).$$

$$\begin{split} A_{n+1} &= A_n + \frac{3\sqrt{3}}{16} \left(\frac{4}{9}\right)^n \quad \text{par d\'efinition de la suite} \\ &= \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^{n-1}\right) + \frac{3\sqrt{3}}{16} \left(\frac{4}{9}\right)^n \quad \text{par hypoth\`ese de r\'ecurrence} \\ &= \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^{n-1} + \frac{20}{16} \left(\frac{4}{9}\right)^n\right) \\ &= \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^{n-1} + \frac{5}{4} \times \frac{4}{9} \left(\frac{4}{9}\right)^{n-1}\right) \\ &= \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^{n-1} \left(1 - \frac{5}{9}\right)\right) \\ &= \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^{n-1} \frac{4}{9}\right) \\ &= \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{20} \left(1 - \left(\frac{4}{9}\right)^{n-1} \frac{4}{9}\right) \end{split}$$

Donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : D'après le principe de récurrence, pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$ est vraie.

Exercice 6 - De la logique

- 1. (a) On a $8 = 7 \times 0 + 8 \times 1$. Donc $8 \in E$
 - (b) On a $37 = 7 \times 3 + 8 \times 2$. Donc $37 \in E$
 - (c) On raisonne par l'absurde. On suppose que $\exists (k,l) \in \mathbb{N}, \ 1=7k+8l.$

Si
$$1 = 7k + 8l$$
 alors $8l = 1 - 7k \le 1$. On a donc $l \le \frac{1}{8}$.

Comme $l \in \mathbb{N}$, on obtient l = 0.

D'ou
$$1 = 7k$$
 et $k = \frac{1}{7}$. Or $k \in \mathbb{N}$ CONTRADICTION.

2. (a) Soit $x \in \mathbb{R}$,

On considère la contraposée $x \neq 0 \implies (\exists \epsilon > 0, \ x < -\epsilon \text{ ou } x > \epsilon)$

(b) On suppose que $x \neq 0$ et on veut montrer $\exists \epsilon > 0, \ x < -\epsilon$ ou $x > \epsilon$.

On va raisonner par disjonction de cas (sur le signe de x).

- * Si x est positif, on peut prendre $\epsilon = \frac{x}{2} > 0$. En effet, $x > \frac{x}{2}$
- * Si x est négatif, on peut prendre $\epsilon = -\frac{x}{2} > 0$. En effet $x < -\epsilon = \frac{x}{2} < 0$

Dans tous les cas, on a trouvé un nombre $\epsilon > 0$ qui convient. Donc la contraposée est vraie.

On a montré que
$$\forall \epsilon > 0, -\epsilon \leq x \leq \epsilon \implies x = 0.$$

3. On veut montrer que le produit de deux nombres pairs est pair.

Soit p_1 et p_2 deux nombres pairs.

Montrons que $p_1 \times p_2$ est pair.

$$p_1$$
 est pair donc $\exists k_1 \in \mathbb{N}, p_1 = 2k_1$.

 p_2 est pair donc $\exists k_2 \in \mathbb{N}, p_2 = 2k_2$.

On a donc $p_1 \times p_2 = 2k_1 \times 2k_2 = 2(2k_1 \times k_2)$

Donc $p_1 \times p_2$ est pair

Conclusion : On a montré que le produit de deux nombres pairs est pair.

4. Soit $(x,y) \in \mathbb{R}^2$. On procède par disjonction de cas :

Premier cas:
$$x < y$$

Tremmer cas:
$$x < y$$

$$\frac{1}{2}(x+y-|x-y|) = \frac{1}{2}(x+y-(y-x)) = \frac{1}{2}(2x) = x = \min(x,y)$$
Deuxième cas: $x \ge y$

$$\frac{1}{2}(x+y-|x-y|) = \frac{1}{2}(x+y-(x-y)) = \frac{1}{2}(2y) = y = \min(x,y)$$

Conclusion : on a montré que pour tous $x, y \in \mathbb{R}$, $\min(x, y) = \frac{1}{2}(x + y - |x - y|)$.