Corrigé du Devoir Maison 3

Exercice 1.

1. L'expression de g se réécrit $\forall x \in \mathbb{R}, \ g(x) = e^{x \ln(1+2x)}$. Cherchons le domaine de définition \mathcal{D}_g de g.

Soit $x \in \mathbb{R}$,

g est définie en $x \iff x \mapsto x \ln(1+2x)$ est définie en x, car exponentielle est définie sur $\mathbb R$

$$\iff \begin{cases} x \longmapsto 1 + 2x \text{ est définie en } x \\ 1 + 2x \in \mathbb{R}_+^* \end{cases} \text{ car le logarithme est défini sur } \mathbb{R}_+^*$$

$$\iff x > -\frac{1}{2}$$

Donc le domaine de définition est : $\mathcal{D}_g = \left] -\frac{1}{2}, +\infty \right[$.

Soit $x \in D_g$,

g est dérivable en x si $x \mapsto x \ln(1+2x)$ est dérivable en x, car exponentielle est dérivable sur \mathbb{R}

si
$$\begin{cases} x \longmapsto 1+2x \text{ est dérivable en } x \\ 1+2x \in \mathbb{R}_+^* \end{cases}$$
 car le logarithme est dérivable sur \mathbb{R}_+^* si $x>-\frac{1}{2}$

la fonction g est dérivable sur $\left]-\frac{1}{2},+\infty\right[$

et:

$$\forall x \in \left] -\frac{1}{2}, +\infty \right[, \qquad g'(x) = \left(\ln(1+2x) + \frac{2x}{1+2x}\right)(1+2x)^x\right]$$

2. Soit $x \in \mathbb{R}$. Alors :

$$\begin{array}{l} h \text{ est définie en } x \iff \left\{ \begin{array}{l} x \longmapsto \frac{x-1}{x+1} \text{ est définie en } x \\ \frac{x-1}{x+1} \in \mathbb{R}_+ & \text{car la racine carr\'e est définie sur } \mathbb{R}_+ \\ \iff \left\{ \begin{array}{l} x \in \mathbb{R} \backslash \{-1\} \text{ (quotient de fonction affine.)} \\ \frac{x-1}{x+1} \geq 0 \end{array} \right. \end{array}$$

On étudie le signe de $\frac{x-1}{x+1}$ à l'aide d'un tableau de signes :

x	$-\infty$		- 1		1		$+\infty$
x-1		_		_	0	+	
x+1		_	0	+		+	
$\frac{x-1}{x+1}$		+		_	0	+	

Donc $\mathcal{D}_h =]-\infty, -1[\cup[1, +\infty[$]. On étudie maintenant la dérivabilité de h. Soit $x \in \mathcal{D}_h$,

$$h$$
 est dérivable en x si
$$\begin{cases} x \longmapsto \frac{x-1}{x+1} \text{ est dérivable en } x \\ \frac{x-1}{x+1} \in \mathbb{R}^*_+, & \text{car la racine carré est dérivable sur } \mathbb{R}^*_+ \end{cases}$$
 si
$$\begin{cases} x \in \mathbb{R} \setminus \{-1\} \text{ (quotient de fonction affine.)} \\ \frac{x-1}{x+1} > 0 \end{cases}$$

Donc:

la fonction
$$h$$
 est dérivable sur $]-\infty,-1[\cup]1,+\infty[$

et:

$$\forall x \in]-\infty, -1[\cup]1, +\infty[, \qquad h'(x) = \frac{\frac{2}{(x+1)^2}}{2\sqrt{\frac{x-1}{x+1}}} = \frac{1}{(x+1)^{3/2}(x-1)^{1/2}}$$

Exercice 2.

- 1. L'inéquation est valide si et seulement si $x^2 1 \ge 0$, c'est-à-dire $x \in]-\infty, -1] \cup [1, +\infty[$. Soit $x \in]-\infty, -1] \cup [1, +\infty[$. Alors
 - ★ Si $x \in]-\infty, -1]$, alors x-1 < 0 et comme $\sqrt{x^2-1} \ge 0$, tous les x de l'intervalle $]-\infty, -1]$ sont solutions.
 - ★ Supposons maintenant que $x \in [1, +\infty[$. Comme la fonction carrée est strictement croissante sur \mathbb{R}_+ et comme $\sqrt{x^2 1} \ge 0$ et $x 1 \ge 0$, on a

$$\sqrt{x^2 - 1} > x - 1 \iff (\sqrt{x^2 - 1})^2 > (x - 1)^2$$
$$\iff x^2 - 1 > x^2 - 2x + 1$$
$$\iff x > 1$$

Finalement, l'ensemble des solutions de l'inéquation est] $-\infty,-1]\cup]1,+\infty[$

2. (a) Soit $x \in \mathbb{R}$,

$$f \text{ est définie en } x \Leftrightarrow \begin{cases} x \mapsto \sqrt{x^2 - 1} + 1 - x \text{ est définie en } x \\ \sqrt{x^2 - 1} + 1 - x > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \in]-\infty, -1] \cup [1 + \infty[\text{ d'après la question précédente} \\ \sqrt{x^2 - 1} > x - 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \in]-\infty, -1] \cup [1 + \infty[\\ x \in]-\infty, -1] \cup [1 + \infty[\\ x \in]-\infty, -1] \cup [1 + \infty[\text{ d'après la question précédente} \end{cases}$$

Ainsi f est définie sur $]-\infty,-1]\cup]1+\infty[$

(b) On utilise la structure conditionnelle if/else :

(c) On a $\lim_{x \to -\infty} (1-x) = \lim_{x \to -\infty} \sqrt{x^2 - 1} = +\infty$ done par somme : $\lim_{x \to -\infty} f(x) = +\infty$ car $\lim_{X \to +\infty} \ln(X) = +\infty$.

De plus,
$$\lim_{x\to 1^+} \sqrt{x^2-1}+1-x=0^+$$
 donc comme $\lim_{X\to 0^+} \ln(X)=-\infty$, on a $\lim_{x\to 1^+} f(x)=-\infty$

On utilise l'expression conjuguée pour trouver la limite en $+\infty$:

Texpression conjuguee point trouver to find the ent
$$+\infty$$
 :
$$\forall x > 1, \quad \sqrt{x^2 - 1} + 1 - x = \frac{(\sqrt{x^2 - 1} + 1 - x)(\sqrt{x^2 - 1} - 1 + x)}{\sqrt{x^2 - 1} - 1 + x}$$

$$= \frac{x^2 - 1 - (1 - x)^2}{\sqrt{x^2 - 1} - 1 + x}$$

$$= \frac{2x - 2}{\sqrt{x^2 - 1} - 1 + x}$$

$$= \frac{2x - 2}{\sqrt{x^2(1 - \frac{1}{x^2})} - 1 + x}$$

$$= \frac{2x - 2}{|x|\sqrt{1 - \frac{1}{x^2}} - 1 + x}$$

$$= \frac{2x - 2}{x(\sqrt{1 - \frac{1}{x^2}} - \frac{1}{x} + 1)}$$

$$= \frac{2 - \frac{2}{x}}{\sqrt{1 - \frac{1}{x^2}} - \frac{1}{x} + 1}$$

d'où l'on déduit que $\lim_{x\to +\infty} f(x) = \ln(1) = 0$. De plus, $f(-1) = \ln(2)$

3. (a) Soit $x \in \mathbb{R}$,

Soit
$$x \in \mathbb{R}$$
,
$$\begin{cases} x \mapsto \sqrt{x^2 - 1} + 1 - x \text{ est d\'erivable en } x \\ \sqrt{x^2 - 1} + 1 - x > 0 \\ x \mapsto 1 - x \text{ est d\'erivable en } x \\ x \mapsto \sqrt{x^2 - 1} \text{ est d\'erivable en } x \\ \sqrt{x^2 - 1} > x - 1 \end{cases}$$
 si
$$\begin{cases} x \mapsto \sqrt{x^2 - 1} + 1 - x \text{ est d\'erivable en } x \\ x \mapsto \sqrt{x^2 - 1} + 1 - x \text{ est d\'erivable en } x \\ x \mapsto 1 - x \text{ est d\'erivable en } x \\ \sqrt{x^2 - 1} > x - 1 \end{cases}$$
 si
$$\begin{cases} x \in \mathbb{R} \\ x \mapsto x^2 - 1 \text{ est d\'erivable en } x \\ x \mapsto x^2 - 1 \text{ est d\'erivable en } x \\ x \mapsto x^2 - 1 \text{ ocar la fonction racine carr\'ee est d\'erivable sur } \mathbb{R}_+^* \\ x \in] - \infty, -1] \cup]1 + \infty[\end{cases}$$
 si
$$\begin{cases} x \in \mathbb{R} \\ x \in \mathbb{R} \\ x \in] - \infty, -1[\cup]1, + \infty[\\ x \in] - \infty, -1] \cup]1 + \infty[\end{cases}$$

Finalement f est dérivable sur] $-\infty, -1[\cup]1 + \infty[$

Pour tout $x \in \mathcal{D}$, on a

$$f'(x) = \frac{\frac{2x}{2\sqrt{x^2 - 1}} - 1}{\sqrt{x^2 - 1} + 1 - x} = \frac{x - \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}(\sqrt{x^2 - 1} + 1 - x)}$$

- (b) L'inéquation est valide si et seulement si $x^2-1\geq 0 \Leftrightarrow x\in]-\infty,-1]\cup [1,+\infty[$. Alors
 - \star Si $x \in]-\infty,-1]$, alors x < 0 et comme $\sqrt{x^2-1} \geqslant 0$, aucune valeur de cet intervalle
 - \star Supposons maintenant que $x \in [1, +\infty[$. Comme la fonction carrée est strictement croissante sur

$$\sqrt{x^2 - 1} \le x \iff (\sqrt{x^2 - 1})^2 \le (x)^2$$

 $\iff x^2 - 1 \le x^2$
 $\iff -1 \le 0 \text{ (toujours vrai)}$

Ainsi toutes les valeurs de l'intervalle $[1, +\infty[$ sont solutions. Finalement, l'ensemble des solutions de l'inéquation est $[1, +\infty[$.

i. On sait que pour tout $x \in \mathcal{D}_f$, on a $\sqrt{x^2-1} > 0$ donc le signe de f'(x) dépend de $x-\sqrt{x^2-1}$ et de $\sqrt{x^2-1}+1-x$. D'après la question 2. (a), on a $\sqrt{x^2-1}+1-x>0$ pour tout $x \in \mathcal{D}_{\{}$. Le signe de f'(x) est donc celui de $x-\sqrt{x^2-1}$. On en déduit le tableau de signes de f' et le tableau de variations de f suivant :

x	$-\infty$ -	- 1	1 +∞
f'(x)	_		+
f	$+\infty$ $\ln(2)$		+ \infty \(- \infty \)