Corrigé du Devoir Maison 2

Problème 1 : Une équation de degré 3

On étudie l'équation :

$$(\heartsuit) \quad 4x^3 - 3x - \frac{\sqrt{2}}{2} = 0.$$

Partie A — Localisation des racines

1. f est dérivable sur \mathbb{R} en tant que fonction polynomiale. Pour tout $x \in \mathbb{R}$, $f'(x) = 12x^2 - 3 = 3(4x^2 - 1) = 3(2x - 1)(2x + 1)$.

On en déduit le tableau de signes de f' et le tableau de variations de f suivant :

x	$-\infty$		$-\frac{1}{2}$		$\frac{1}{2}$		$+\infty$
2x+1		_	0	+		+	
2x-1		_		_	0	+	
f'(x)		+	0	_	0	+	
f	$-\infty$		$f(-\frac{1}{2})$		$f(\frac{1}{2})$		$+\infty$

On a
$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} x^3 \left(4 - \frac{3}{x^2} - \frac{\sqrt{2}}{2x^3} \right) = \pm \infty.$$

De plus, $f\left(-\frac{1}{2}\right) = 1 - \frac{\sqrt{2}}{2}$ et $f\left(\frac{1}{2}\right) = -1 - \frac{\sqrt{2}}{2}$.

- 2. f est strictement croissante sur] $-\infty$; -1] donc pour tout $x \le -1$: $f(x) \le f(-1) \iff f(x) \le -1 \frac{\sqrt{2}}{2} \implies f(x) < 0$ donc [l'équation (\heartsuit) n'admet pas de solution sur l'intervalle] $-\infty$; -1].
- 3. f est strictement croissante sur $[1; +\infty[$ donc pour tout $x \ge 1, \ f(x) \ge f(1) \iff f(x) \ge 1 \frac{\sqrt{2}}{2} \implies f(x) > 0$. Donc [l'équation (\heartsuit) n'admet pas de solution sur l'intervalle $[1; +\infty[$.]
- 4. **Étude sur l'intervalle** $\left[-1,-\frac{1}{2}\right]$. La fonction f est continue et strictement croissante sur l'intervalle $\left[-1,-\frac{1}{2}\right]$. De plus, $f\left(\left[-1,-\frac{1}{2}\right]\right)=\left[-1-\frac{\sqrt{2}}{2};1-\frac{\sqrt{2}}{2}\right]$. Comme $-1-\frac{\sqrt{2}}{2}<0<1-\frac{\sqrt{2}}{2}$, on a $0\in f\left(\left[-1,-\frac{1}{2}\right]\right)$. D'après le théorème de la bijection, l'équation f(x)=0 (autrement dit l'équation (\heartsuit)) admet une unique solution dans l'intervalle $\left[-1,-\frac{1}{2}\right]$.

Étude sur l'intervalle $\left[-\frac{1}{2},\frac{1}{2}\right]$. La fonction f est continue et strictement décroissante sur l'intervalle $\left[-\frac{1}{2},\frac{1}{2}\right]$. De plus, $f\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right) = \left[-1-\frac{\sqrt{2}}{2};1-\frac{\sqrt{2}}{2}\right]$. Comme $-1-\frac{\sqrt{2}}{2} < 0 < 1-\frac{\sqrt{2}}{2}$, on a $0 \in f\left(\left[-\frac{1}{2},\frac{1}{2}\right]\right)$. D'après le théorème de la bijection, l'équation (\heartsuit) admet une unique solution dans l'intervalle $\left[-\frac{1}{2},\frac{1}{2}\right]$.

Étude sur l'intervalle $\left[\frac{1}{2},1\right]$. La fonction f est continue et strictement croissante sur l'intervalle $\left[\frac{1}{2},1\right]$. De plus, $f\left(\left[\frac{1}{2},1\right]\right) = \left[-1 - \frac{\sqrt{2}}{2};1 - \frac{\sqrt{2}}{2}\right]$. Comme $-1 - \frac{\sqrt{2}}{2} < 0 < 1 - \frac{\sqrt{2}}{2}$, on a $0 \in f\left(\left[\frac{1}{2},1\right]\right)$. D'après le théorème de la bijection, l'équation (\heartsuit) admet une unique solution dans l'intervalle $\left[\frac{1}{2},1\right]$.

Finalement, l'équation (\heartsuit) admet exactement trois solutions dans l'intervalle [-1,1].

5. Soit $x \in \mathbb{R}$. On suppose que x est solution de (\heartsuit) . D'après les questions 2., 3. et 4. de la **Partie** \mathbf{A} , on sait que $x \in [-1,1]$. La fonction cosinus est continue sur \mathbb{R} et $\cos(\mathbb{R}) = [-1,1]$. D'après le théorème des valeurs intermédiaires, il existe $\theta \in \mathbb{R}$ tel que $\cos(\theta) = x$. Donc

pour toute solution x de (\heartsuit) , il existe $\theta \in \mathbb{R}$ tel que $x = \cos(\theta)$

Partie B — Formules trigonométriques

1.
$$\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} + \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{2}.$$

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} - \frac{1}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{2}.$$
2. $\cos\left(\frac{7\pi}{12}\right) = \cos\left(\frac{\pi}{12} + \frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{12}\right) = \frac{-\sqrt{6} + \sqrt{2}}{2}.$

Partie C — Résolution trigonométrique

1. Soit $\theta \in \mathbb{R}$.

$$\cos(3\theta) = \cos(2\theta + \theta) = \cos(2\theta)\cos(\theta) - \sin(2\theta)\sin(\theta)$$

$$= (\cos^2(\theta) - \sin^2(\theta))\cos(\theta) - \sin(\theta) \times 2\sin(\theta)\cos(\theta)$$

$$= \cos^3(\theta) - \sin^2(\theta)\cos(\theta) - 2\sin^2(\theta)\cos(\theta)$$

$$= \cos^3(\theta) - 3\sin^2(\theta)\cos(\theta)$$

$$= \cos^3(\theta) - 3(1 - \cos^2(\theta))\cos(\theta)$$

$$= \cos^3(\theta) - 3\cos(\theta) + 3\cos^3(\theta)$$

$$= \left[4\cos^3(\theta) - 3\cos(\theta)\right]$$

2. Soit $\theta \in \mathbb{R}$. Soit $x = \cos(\theta)$.

En utilisant la question 1 de la partie C et le fait que $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$, on obtient : x est solution de (\heartsuit) ssi $4\cos^3\theta - 3\cos\theta = \frac{\sqrt{2}}{2}$ ssi $\cos(3\theta) = \cos(\frac{\pi}{4})$.

3. Soit $\theta \in \mathbb{R}$. Alors

$$\cos(3\theta) = \cos\left(\frac{\pi}{4}\right) \iff 3\theta = \frac{\pi}{4} \mod 2\pi \text{ ou } 3\theta = -\frac{\pi}{4} \mod 2\pi$$

$$\iff \theta = \frac{\pi}{12} \mod \frac{2\pi}{3} \text{ ou } \theta = -\frac{\pi}{12} \mod \frac{2\pi}{3}$$

4. On en déduit $x = \cos(\theta)$ avec θ ci-dessus. Les trois solutions réelles distinctes correspondent à trois valeurs de cos distinctes dans $[0, 2\pi]$. Ainsi :

2

$$x_1 = \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{2}, \quad x_2 = \cos\left(\frac{9\pi}{12}\right) = -\frac{\sqrt{2}}{2}, \quad x_3 = \cos\left(\frac{17\pi}{12}\right) = \cos\left(\frac{7\pi}{12}\right) = \frac{-\sqrt{6} + \sqrt{2}}{2}.$$

Exercice 2 (Facultatif)

- 1. Pour (a,b)=(1,0) on a |a|+|b|=1 et a-b=1, donc $1\in F$. D'après l'inégalité triangulaire on a, $|a|+|b|\geq |a-b|=1$, donc $0\notin F$.
- 2. Pour $(a,b)=(\frac{3}{2},\frac{1}{2})$. On a : a-b=1, |a|+|b|=2. Donc $2\in F$. D'après l'inégalité triangulaire on a, $|a|+|b|\geq |a-b|=1$, donc $\frac{1}{2}\not\in F$.
- 3. Pour (a, b) = (3, 2) on a $5 \in F$.
- 4. Soit $(a,b) \in F$, d'après l'inégalité triangulaire on a, $|a|+|b| \ge |a-b|=1$. Donc F est minoré par 1.
- 5. (a) Soit $x \ge 1$, on prend $a = \frac{x+1}{2}$, $b = a-1 = \frac{x-1}{2}$. Alors a-b=1 et $|a|+|b|=a+b=\frac{x+1}{2}+\frac{x-1}{2}=x$.
 - (b) D'après la question précédente, pour tout $x \in [1, +\infty[$, $x \in F$. Donc $[1, +\infty[\subset F$.
 - (c) $[1, +\infty[$ n'es pas majorée et $[1, +\infty[\subset F]$. Donc F n'est pas majoré.
- 6. (a) Soit $(a,b) \in \mathbb{R}^2$ tel que |a|+|b|<1, alors d'après l'inégalité triangulaire $a-b \leq |a-b| \leq |a|+|b|<1$.
 - (b) Soit $x \in F$. Alors il existe $(a,b) \in \mathbb{R}^2$ tel que a-b=1 et |a|+|b|=x. Supposons par l'absurde que x<1 alors d'après la question précédente on a 1=a-b<1. Contradiction. Donc $x \in [1,+\infty[$ On a montré que $F \subset [1,+\infty[$.
- 7. On a montré les deux inclusions donc $F = [1, +\infty[$.