Devoir Maison 2

- Soignez la présentation.
- Vos conclusions doivent toujours être encadrées.

Problème 1 : Une équation de degré 3

On veut résoudre dans \mathbb{R} l'équation :

$$4x^3 - 3x - \frac{\sqrt{2}}{2} = 0$$
 (\heartsuit)

Partie A — Localisation des racines de (\heartsuit)

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = 4x^3 - 3x - \frac{\sqrt{2}}{2}.$$

- 1. Dresser le tableau de variations de la fonction f.
- 2. Montrer que l'équation (\heartsuit) n'admet pas de solution sur $]-\infty;-1]$.
- 3. Étudier le signe de f sur $[1; +\infty]$ et en déduire si une solution existe sur cet intervalle.
- 4. Justifier à l'aide du théorème de la bijection que (\heartsuit) admet une unique solution dans chacun des intervalles $[-1, -\frac{1}{2}]$, $[-\frac{1}{2}, \frac{1}{2}]$ et $[\frac{1}{2}, 1]$.
- 5. Justifier alors que si x est une solution de (\heartsuit) , alors il existe $\theta \in \mathbb{R}$ tel que $x = \cos(\theta)$. On pourra appliquer le théorème des valeurs intermédiaires à la fonction cosinus.

Partie B — Formules trigonométriques

- 1. En utilisant que $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$ et les formules trigonométriques usuelles, calculer $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.
- 2. En déduire la valeur de $\cos\left(\frac{7\pi}{12}\right)$.

Partie C — Résolution trigonométrique

1. Soit $\theta \in \mathbb{R}$. En utilisant que $3\theta = 2\theta + \theta$, montrer que

$$\cos(3\theta) = 4\cos(\theta)^3 - 3\cos(\theta)$$

- 2. Soit $\theta \in \mathbb{R}$. Montrer que $x = \cos(\theta)$ est solution de (\mathfrak{O}) si et seulement si $\cos(3\theta) = \cos(\frac{\pi}{4})$.
- 3. Résoudre dans \mathbb{R} l'équation $\cos(3\theta) = \cos(\frac{\pi}{4})$.
- 4. En déduire l'ensemble des solutions réelles de (\heartsuit) .

Théorèmes utiles (rappel)

Théorème de la bijection: Si f est continue et strictement monotone sur un intervalle [a, b], alors pour tout g entre f(a) et f(b), il existe un unique g et g tel que g et g.

Théorème des valeurs intermédiaires : Si f est continue sur [a,b], alors pour tout y entre f(a) et f(b), il existe $x \in [a,b]$ tel que f(x) = y.

Exercice 2 (Facultatif)

On considère les ensembles

$$E = \{(a,b) \in \mathbb{R}^2 \mid a-b=1\} \text{ et } F = \{|a|+|b| \mid (a,b) \in E\}.$$

- 1. Montrer que $1 \in F$ et que $0 \notin F$.
- 2. Montrer que $2 \in F$ et que $\frac{1}{2} \not\in F$.
- 3. Donner un autre élément de ${\cal F}$ et justifier.
- 4. Justifier que F est minoré.
- 5. (a) Soit $x \ge 1$. Trouver $(a, b) \in E$ tel que x = |a| + |b|.
 - (b) En déduire qu'un intervalle à préciser est inclus dans F.
 - (c) F est-il majoré? Justifier.
- 6. (a) Montrer : $|a| + |b| < 1 \implies a b < 1$.
 - (b) En déduire que $F \subset [1, +\infty[$.
- 7. Conclure.