Je m'échauffe avec les compétences de base!

Exercice n° 1: Ecrire les sommes en utilisant le symbole \sum

1.
$$A = 1 + 2 + \dots + 50$$

2.
$$B = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{100}$$

3.
$$C = \ln(3) + \ln(4) + \dots + \ln(70)$$

4.
$$D = \cos(\pi) + \cos(3\pi) + \cos(5\pi) + \dots + \cos((2n+1)\pi)$$

5.
$$E = 6 + 8 + 10 + \dots + 2n$$

Exercice n° 2: Calculer les sommes suivantes.
$$A = \sum_{k=0}^{10} 1 \qquad B = \sum_{k=1}^{100} 2k \qquad C = \sum_{k=15}^{100} k \qquad D = \sum_{k=2}^{17} 2^k$$

$$E = \sum_{k=1}^{10} k^2 \qquad F = \sum_{k=10}^{20} k^2 \qquad G = \sum_{k=0}^{10} \frac{1}{4^k} \qquad H = \sum_{k=2}^{2} k^5$$

Exercice n° 3: Dans cet exercice, i, j, n sont trois entiers positifs non nuls avec $i \leq j$ et x un réel. Calculer les expressions suivantes.

$$A = \sum_{k=i}^{j} (j - k + 2^{k}) \qquad B = \sum_{k=0}^{n} \frac{2 \times 3^{k}}{5^{k+1}} \qquad C = \sum_{k=0}^{n} (n - k + 1)^{2} \qquad D = \sum_{k=0}^{n} \left(x + \frac{k}{n} \right) \qquad E = \sum_{k=0}^{n} e^{2k+1}$$

Exercice n° 4: Factoriser les expressions suivantes.

$$A = x^n - 1$$
 $B = \frac{1}{2^n} - x^{2n}$ $C = 1 - 3^{2n}$

Exercice n° 5: Démontrer la formule suivante.

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Exercice n° 6: Calculer les sommes suivantes.

$$A = \sum_{k=0}^{n} {n \choose k} 2^k (-1)^k \qquad B = \sum_{k=0}^{n} {n \choose k} 2^{n-k} \qquad C = \sum_{k=1}^{n} \frac{{n \choose k}}{3^k}$$

$$D = \sum_{k=0}^{n} (-1)^k {n \choose k} \qquad E = \sum_{k=0}^{n} {n \choose k} \qquad F = \sum_{k=1}^{n} k {n \choose k}$$

Exercice n° 7: Calculer les sommes doubles suivantes.

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} 1 \qquad B = \sum_{i=1}^{n} \sum_{j=1}^{n} (i+j) \qquad C = \sum_{1 \le i \le j \le n} 3 \qquad D = \sum_{i=1}^{n} \sum_{j=1}^{n} 2^{i-j}$$

$$E = \sum_{i=1}^{n} \sum_{j=1}^{n} \max(i,j) \qquad F = \sum_{0 \le k \le p \le n} {p \choose k} 3^k \qquad G = \sum_{0 \le k \le \ell \le n} \frac{k}{\ell+1} \qquad H = \sum_{1 \le i,j \le n} i \times j$$

Exercice n° 8: Ecrire les produits en utilisant le symbole \prod .

1.
$$A = 7 \times 8 \times \times ... \times 150$$

2.
$$B = e^2 \times e^4 \times ... \times e^{2n}$$

3.
$$C = (X - a_1)^{\alpha_1} \times (X - a_2)^{\alpha_2} \times ... \times (X - a_n)^{\alpha_p}$$

Exercice n° 9:

Soit $n \in \mathbb{N}^*$. Calculer les produits suivants

$$A = \prod_{k=1}^{9} (-1) \qquad B = \prod_{k=1}^{n} 3^{2} \quad , \quad C = \prod_{k=1}^{n} \left(\frac{k+3}{k+5}\right) \quad , \quad D = \prod_{k=1}^{n} \exp\left(\frac{k}{n}\right) \quad , \quad E = \prod_{k=2}^{n} \left(1 - \frac{1}{k^{2}}\right)$$

Exercice n° 10: Ecrire avec des factorielles les expressions suivantes.

$$A = \prod_{k=n}^{2n} k$$
 $B = \prod_{k=1}^{n} (2k)$ $C = \prod_{i=1}^{n} i^{2}$ $D = \prod_{i=1}^{n} (2i+1)$ $E = \sum_{k=1}^{n} \ln(3k)$

Je me perfectionne!

Exercice n° 11:

On pose
$$S = \sum_{k=0}^{80} \frac{1}{\sqrt{k+1} + \sqrt{k}}$$
.

- 1. Montrer que pour tout $k \in \mathbb{N}$, $\frac{1}{\sqrt{k+1} + \sqrt{k}} = \sqrt{k+1} \sqrt{k}$.
- 2. En déduire une autre écriture de S et calculer la valeur exacte de S.

Exercice n° 12: Décomposition en éléments simples d'une fraction rationnelle Soit $n \in \mathbb{N}^*$.

- 1. Établir qu'il existe 3 réels a, b et c tels que $\forall k \in \mathbb{N}^*$, on ait $\frac{1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}$.
- 2. Calculer la somme $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}.$

Exercice n° 13: Somme d'inégalités

- 1. Montrer que $\forall n \geq 2, \frac{1}{n^2} \leq \frac{1}{n-1} \frac{1}{n}$.
- 2. On pose pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{k^2}$. Montrer que pour tout $n \in \mathbb{N}^*$, $1 \le S_n \le 2$.

Exercice n° 14: Somme et dérivation

Soit
$$n \in \mathbb{N} \setminus \{0, 1\}$$
. Pour tout $x \in \mathbb{R}$, on pose $f(x) = \sum_{i=0}^{n} x^{i}$.

- 1. Calculer f(x).
- 2. En dérivant la fonction f, calculer la somme $\sum_{i=1}^{n} ix^{i-1}$. En déduire $\sum_{i=1}^{n} ix^{i}$.
- 3. En déduire une autre expression de $\sum_{k=1}^{n} \frac{k}{2^k}$.

Exercice n° 15:

Soit
$$n \in \mathbb{N}$$
. En faisant apparaître une somme télescopique, calculer la somme $S_n = \sum_{k=0}^n k \, k!$

Exercice n° 16: Sommes d'indices pairs et impairs

Soit
$$n \in \mathbb{N}^*$$
. On pose $P_n = \sum_{k=0}^n {2n \choose 2k}$ et $I_n = \sum_{k=0}^{n-1} {2n \choose 2k+1}$

- 1. Montrer que $P_n + I_n = 2^{2n}$ et $P_n I_n = 0$.
- 2. En déduire les valeurs de P_n et I_n .

Exercice n° 17:

- 1. Ecrire la somme suivante en extension et en déduire sa valeur : $\sum_{k=0}^{7} 10^k$
- 2. Calculer alors $A=1+11+111+1111+\cdots+\underbrace{111...111}_{\text{n fois}}$ où $n\in\mathbb{N}^*$

Maintenant que je suis fort(e), voici des extraits de DS sur ce thème!

Exercice n° 18:

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. On considère l'expression :

$$A = (x+1)^n$$

2

- 1. Écrire en langage python une fonction récursive puissance qui prend en entrée les paramètres x et n et qui calcule $(x+1)^n$.
- 2. Dans cette question seulement, on suppose que $x \in \mathbb{R}_+^*$. Écrire en langage python une fonction depasse qui prend en paramètres le nombre réel x et un entier naturel M et qui renvoie la plus petite valeur de n pour laquelle $(x+1)^n > M$.
- 3. Développer $(x+1)^n$.
- 4. Intégrer l'égalité de la question précédente entre 0 et 1 puis en déduire la valeur de la somme :

$$S = \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$$

Exercice n° 19:

Les deux parties suivantes sont indépendantes.

Partie A : calcul de
$$\sum\limits_{k=0}^{n}k2^{k-1}$$

Pour tout entier naturel n, on pose $u_n = \sum_{0 \le i \le k \le n} 2^k$.

- 1. Pour tout entier naturel n, écrire la somme double u_n de deux manières différentes.
- 2. Montrer que pour tout $(i,n) \in \mathbb{N}^2$ tel que $i \leq n$, on a $\sum_{k=i}^n 2^k = 2^{n+1} 2^i$.
- 3. En déduire que, pour tout entier naturel n, on a $u_n = n2^{n+1} + 1$.
- 4. Écrire en python une fonction suite qui prend en paramètre un entier naturel n et renvoie la valeur de u_n .
- 5. Soit $n \in \mathbb{N}$. En utilisant l'autre écriture de u_n montrer qu'on a aussi $u_n = \sum_{k=0}^n (k+1)2^k$.
- 6. En déduire que, pour tout entier naturel n, on a $\sum_{k=0}^{n} k 2^{k-1} = (n-1)2^n + 1$.

Partie B: calcul de $\sum_{k=0}^{n} k^2 \binom{n}{k}$

Soit n un entier naturel non nul.

- 1. Proposer en python une fonction récursive factorielle prenant en paramètre un entier naturel n et renvoyant la valeur de n!.
- 2. Rappeler les valeurs des sommes $\sum_{k=0}^{n} {n \choose k}$ et $\sum_{k=0}^{n} {n \choose k} (-1)^k$.
- 3. Montrer que $\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$.
- 4. Montrer que pour tous entiers naturels k et n supérieurs ou égaux à 2 tels que $k \leq n$, on a $k(k-1)\binom{n}{k} = n(n-1)\binom{n-2}{k-2}$ et en déduire la valeur de $\sum_{k=2}^{n} k(k-1)\binom{n}{k}$.
- 5. En déduire la valeur de $\sum_{k=0}^{n} k^2 \binom{n}{k}$.