Corrigé du Devoir surveillé 2

Exercice 1.

1. Soit $x \in \mathbb{R}$

$$\sin(2x + \frac{\pi}{2}) = \frac{\sqrt{3}}{2} \iff \sin(2x + \frac{\pi}{2}) = \sin(\frac{\pi}{3})$$

$$\iff 2x + \frac{\pi}{2} = \frac{\pi}{3} + 2k\pi \text{ ou } 2x + \frac{\pi}{2} = \pi - \frac{\pi}{3} + 2k\pi, \text{ avec } k \in \mathbb{Z}$$

$$\iff 2x = -\frac{\pi}{6} + 2k\pi \text{ ou } 2x = \frac{\pi}{6} + 2k\pi, \text{ avec } k \in \mathbb{Z}$$

$$\iff x = -\frac{\pi}{12} + k\pi \text{ ou } x = \frac{\pi}{12} + k\pi, \text{ avec } k \in \mathbb{Z}$$

L'ensemble des solutions est

$$S = \{ -\frac{\pi}{12} + k\pi; \frac{\pi}{12} + k\pi | k \in \mathbb{Z} \}.$$

2. Soit $x \in \mathbb{R}$,

$$\cos(x) - \sqrt{3}\sin x = 1 \iff 2\left(\frac{1}{2}\cos(x) - \frac{\sqrt{3}}{2}\sin(x)\right) = 1$$

$$\iff \frac{1}{2}\cos(x) - \frac{\sqrt{3}}{2}\sin(x) = \frac{1}{2}$$

$$\iff \cos(x)\cos(\frac{\pi}{3}) - \sin(x)\sin(\frac{\pi}{3}) = \frac{1}{2}$$

$$\iff \cos(x + \frac{\pi}{3}) = \frac{1}{2}$$

$$\iff \cos(x + \frac{\pi}{3}) = \cos(\frac{\pi}{3})$$

$$\iff x + \frac{\pi}{3} = \frac{\pi}{3} + 2k\pi \text{ ou } x + \frac{\pi}{3} = -\frac{\pi}{3} + 2k\pi, \text{ avec } k \in \mathbb{Z}$$

$$\iff x = 2k\pi \text{ ou } x = -\frac{2\pi}{3} + 2k\pi, \text{ avec } k \in \mathbb{Z}$$

L'ensemble des solutions est

$$\mathcal{S} = \{2k\pi; -\frac{2\pi}{3} + 2k\pi | k \in \mathbb{Z}\}.$$

3. Soit $x \in \mathbb{R}$, l'équation est valide si et seulement si $2x - 3 \neq 0$ et $x + 4 \neq 0$, car le logarithme est définie sur \mathbb{R}_+^* et la valeur absolue est à valeurs dans \mathbb{R}_+ .

Soit
$$x \in \mathbb{R} \setminus \left\{-4, \frac{3}{2}\right\}$$
,

$$\ln(|2x-3|) - \ln(|x+4|) = \ln(3) \iff \ln\left(\frac{|2x-3|}{|x+4|}\right) = \ln(3)$$

$$\iff \left|\frac{2x-3}{x+4}\right| = 3 \text{ car } x \mapsto e^x \text{ est strictement croissante sur } \mathbb{R}.$$

$$\iff \frac{2x-3}{x+4} = 3 \text{ ou } \frac{2x-3}{x+4} = -3$$

$$\iff 2x-3 = 3x+12 \text{ ou } 2x-3 = -3x-12$$

$$\iff x = -15 \text{ ou } x = \frac{-9}{5}$$

1

L'ensemble des solutions de l'équation est $S = \left\{-15 ; \frac{-9}{5}\right\}$.

Exercice 2.

1. Réécrivons $g(x) = e^{x \ln(5+x)}$. La fonction exponentielle et la fonction $x \mapsto x$ sont définies et dérivables sur \mathbb{R} . La fonction logarithme étant définie et dérivable sur \mathbb{R}^+_* , la fonction g est définie en $x \in \mathbb{R}$ si et seulement si x+5>0 et dérivable en $x \in \mathbb{R}$ si x+5>0.

Donc g est définie et dérivable sur $]-5,+\infty[$. Pour tout $x\in]-5,+\infty[$,

$$g'(x) = \left(\ln(x+5) + \frac{x}{5+x}\right)e^{x\ln(5+x)}$$

Par produit, $\lim_{x \to +\infty} x \ln(x+5) = +\infty$ et donc par composition $\lim_{x \to +\infty} g(x) = +\infty$.

 $\lim_{x \to -5} \ln(x+5) = -\infty \text{ donc } \lim_{x \to -5} x \ln(x+5) = +\infty. \text{ Donc par composition } \lim_{x \to -5} g(x) = +\infty.$

2. Soit $x \in \mathbb{R}$,

La fonction h est définie en $x \Leftrightarrow x^2 - 5x + 4 > 0$ car la fonction $x \mapsto \ln(x)$ est défine sur \mathbb{R}^+_*

Les racines de $x^2 - 5x + 4$ sont 1 et 4. Le coefficient dominant étant positif, $x^2 - 5x + 4 > 0 \Leftrightarrow x \in]-\infty, 1[\cup]4, +\infty[$. Donc la fonction h est définie sur $]-\infty, 1[\cup]4, +\infty[$.

La fonction logarithme est dérivable sur \mathbb{R}_*^+ .

La fonction $x \mapsto x^2 - 5x + 4$ est dérivable sur \mathbb{R} .

Par composition la fonction h est dérivable en $x \in \mathbb{R}$ si $x^2 - 5x + 4 > 0$.

Donc h est dérivable sur $]-\infty,1[\cup]4,+\infty[$. Pour tout $x\in]-\infty,1[\cup]4,+\infty[$:

$$h'(x) = \frac{2x - 5}{x^2 - 5x + 4}$$

Soit
$$x \in \mathbb{R}$$
, $x^2 - 5x + 4 = x^2 \left(1 - \frac{5}{x} + \frac{4}{x^2}\right)$.

 $\lim_{x \to +\infty} x^2 - 5x + 4 = \lim_{x \to -\infty} x^2 - 5x + 4 = +\infty.$ Donc par composition $\lim_{x \to +\infty} h(x) = \lim_{x \to -\infty} h(x) = +\infty.$

 $\lim_{x\to 1} x^2 - 5x + 4 = \lim_{x\to 3} x^2 - 5x + 4 = 0 \text{ et le polynôme est positif sur }] - \infty, 1[\cup]3, +\infty. \text{ Donc par produit } \lim_{x\to +\infty} h(x) = \lim_{x\to -\infty} h(x) = -\infty.$

Exercice 3.

1. from math import *

def f(x):

return $x+(\sin(x))**2$

2. (a) Pour tout $x \in \mathbb{R}$,

$$0 < |\sin(x)| < 1$$

 $\Longleftrightarrow 0 \leq \sin^2(x) \leq 1 \quad \text{car la fonction carrée est strictement croissante sur } \mathbb{R}_+$

$$\iff x \le x + \sin^2(x) \le x + 1$$

$$\iff x < f(x) < x + 1$$

(b) $\lim_{x\to -\infty} x+1=-\infty$ et comme pour tout $x\in\mathbb{R},$ $f(x)\leq x+1,$ alors d'après le théorème de comparaison, $\lim_{x\to -\infty} f(x)=-\infty$.

De même, $\lim_{x\to +\infty}x=+\infty$ et comme pour tout $x\in\mathbb{R},$ $f(x)\geq x,$ alors d'après le théorème de comparaison, $\lim_{x\to +\infty}f(x)=+\infty$.

(c) Pour tout $x \in \mathbb{R}_+^*$,

$$0 \le |\sin(x)| \le 1$$

 $\iff 0 \le \sin^2(x) \le 1$ car la fonction carrée est strictement croissante sur \mathbb{R}_+

$$\iff 0 \le \frac{\sin^2(x)}{x} \le \frac{1}{x} \quad \text{car } x > 0$$

Comme $\lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} 0 = 0$, d'après le théorème des gendarmes, $\lim_{x \to +\infty} \frac{\sin^2(x)}{x} = 0$.

2

Ainsi,
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{(\sin(x))^2}{x} + 1 = 1.$$

- 3. (a) Pour tout $x \in \mathbb{R}$, $f(x+\pi) = x + \pi + (\sin(x+\pi))^2 = x + \pi + (-\sin(x))^2 = x + \pi + (\sin(x))^2 = f(x) + \pi$.
 - (b) f est dérivable sur \mathbb{R} comme somme d'une fonction polynomiale et puissance d'une fonction sinus. Pour tout $x \in \mathbb{R}$, $f'(x) = 1 + 2\sin(x)\cos(x) = 1 + \sin(2x)$.
 - (c) Soit $x \in \mathbb{R}$.

$$f'(x) = 0 \iff 1 + \sin(2x) = 0$$

$$\iff \sin(2x) = -1$$

$$\iff \sin(2x) = \sin\left(-\frac{\pi}{2}\right)$$

$$\iff 2x \equiv -\frac{\pi}{2}[2\pi] \quad \text{ou} \quad 2x \equiv \pi + \frac{\pi}{2}[2\pi]$$

$$\iff x \equiv -\frac{\pi}{4}[\pi] \quad \text{ou} \quad x \equiv \frac{3\pi}{4}[\pi]$$

$$\iff x \equiv -\frac{\pi}{4}[\pi]$$

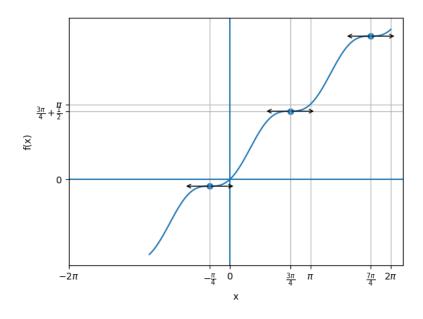
L'ensemble des solutions de l'équation f'(x) = 0 est $\left\{-\frac{\pi}{4} + k\pi, \ k \in \mathbb{Z}\right\}$.

(d) Pour tout $x \in [0, \pi]$, $-1 \le \sin(2x) \le 1 \iff 0 \le 1 + \sin(2x) \le 2 \iff 0 \le f'(x) \le 2$. A l'aide de la question précédente, on en déduit le tableau de variations suivant :

x	$0 \qquad \frac{3\pi}{4}$	π
f'(x)	+ 0 +	
f	$\frac{3\pi}{4} + \frac{1}{2}$	π

On a
$$f\left(\frac{3\pi}{4}\right) = \frac{3\pi}{4} + \left(\sin\left(\frac{3\pi}{4}\right)\right)^2 = \frac{3\pi}{4} + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{3\pi}{4} + \frac{1}{2}.$$

4. On obtient le graphe suivant :



Problème 1.

1.(a) from math import *
 def gpositive(x):
 if x+exp(-x)>0:
 return True

else:

return False

- 2. (a) La fonction g est dérivable sur \mathbb{R} de dérivée, $\forall x \in \mathbb{R}, g'(x) = 1 e^{-x}$. Soit $x \in \mathbb{R}$,

$$1 - e^{-x} > 0 \iff 1 > e^{-x}$$

 $\iff 0 > -x, \text{ car } x \mapsto \ln(x) \text{ est strictement croissante sur } \mathbb{R}_+^*.$
 $\iff x > 0$

x	-∞	0		+∞
g'(x)	_	0	+	
g	+∞	1		+∞

En effet,
$$\lim_{x\to -\infty} g(x) = \lim_{x\to -\infty} x + \mathrm{e}^{-x} = \lim_{x\to -\infty} \left(x\mathrm{e}^x + 1\right)\mathrm{e}^{-x} = +\infty$$
 par croissance comparée et $\lim_{x\to +\infty} g(x) = \lim_{x\to +\infty} x + \mathrm{e}^{-x} = +\infty$. Enfin on a $g(0) = 1$.

- (b) D'après la question précédente, la fonction g est décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$. Comme g(0)>0, on a pour tout $x\in\mathbb{R}, g(x)>0$.
- 3. (a) La fonction logarithme est définie sur \mathbb{R}_+^* et d'après la question précédente, pour tout $x \in \mathbb{R}$, g(x) > 0. Donc par composition la fonction f est définie sur \mathbb{R} .
 - (b) Soit $x \in \mathbb{R}$,

$$\ln (x + e^{-x}) = \ln ((xe^{x} + 1)e^{-x})$$
$$= \ln (xe^{x} + 1) + \ln (e^{-x})$$
$$= \ln (xe^{x} + 1) - x$$

On a montré que pour tout $x \in \mathbb{R}$, $f(x) = -x + \ln(xe^x + 1)$.

- (c) Par croissance comparée, $\lim_{x\to -\infty} x \mathrm{e}^x = 0$. Donc $\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \ln\left(x \mathrm{e}^x + 1\right) x = +\infty$. On remarque que $\lim_{x\to -\infty} g(x) (-x) = \lim_{x\to -\infty} \ln\left(x \mathrm{e}^x + 1\right) = 0$. Donc la courbe représentative de f admet une asymptote oblique d'équation y = -x en $-\infty$. De plus, $\lim_{x\to +\infty} f(x) = +\infty$.
- 4. (a) La fonction logarithme est dérivable sur \mathbb{R}_+^* et d'après la question 2.(b), pour tout $x \in \mathbb{R}$, $x + e^{-x} > 0$. Donc par composition la fonction f est dérivable sur \mathbb{R} . On a pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{g'(x)}{g(x)} = \frac{1 - e^{-x}}{x + e^{-x}}.$$

(b) Soit $x \in \mathbb{R}$, d'après la question 2.(b), f'(x) est du signe de g'(x). On obtient donc les variations suivantes.

4

x	-∞	0		+∞
f'(x)	_	0	+	
f	+∞			+∞

(c) La fonction f est continue et strictement croissante sur \mathbb{R}_+ . On a de plus f(0)=0 et $\lim_{x\to +\infty}g(x)=+\infty$. Comme $1\in [0;+\infty[$, on a d'après le théorème de la bijection que l'équation f(x)=1 admet une unique solution sur \mathbb{R}_+ .

Problème 2.

1. Soit $x \in \mathbb{R}$:

<u>Domaine de validité</u>: L'équation est valide si et seulement si $\frac{x^3 - 4x}{x - 1} \ge 0$ et $x \ne 1$ car la fonction $x \mapsto \sqrt{x}$ est définie sur \mathbb{R}^+ .

 $x\mapsto \sqrt{x}$ est définie sur \mathbb{R}^+ . Or $\frac{x^3-4x}{x-1}=\frac{(x^2-4)x}{x-1}=\frac{(x-2)(x+2)x}{x-1}$. On dresse le tableau de signe :

 $x-1 \ge 0 \Leftrightarrow x \ge 1$, $x^2-4 \le 0 \Leftrightarrow -2 \le x \le 2$ puisque x^2-4 est une polynôme du second degré de coefficient dominant positif et de racines -2 et 2.

x	$-\infty$		-2		0		1		2		+∞
x		_		_	0	+		+		+	
$x^2 - 4$		+	0	_		_		_	0	+	
x-1		_		_		_		+		+	
$\frac{x^3 - 4x}{x - 1}$		+	0	_	0	+		_	0	+	

On résout donc sur $]-\infty;-2]\cup[0;1[\cup[2;+\infty[$.

Soit $x \in]-\infty; -2] \cup [0; 1[\cup [2; +\infty[$.

— Si x<0 l'inéquation n'admet pas de solution puisque pour tout $x\in]-\infty;-2]\cup[0;1[\cup[2;+\infty[,\sqrt{\frac{x^3-4x}{x-1}}\geq 0$ — Si $x\geq 0$.

5

$$x \geqslant \sqrt{\frac{x^3 - 4x}{x - 1}} \Leftrightarrow x^2 \ge \frac{x^3 - 4x}{x - 1}$$

car la fonction $x \mapsto x^2$ est strictement croissante sur \mathbb{R}^+ ,

$$x \ge 0 \text{ et } \sqrt{\frac{x^3 - 4x}{x - 1}} \ge 0$$

$$\Leftrightarrow x^2 - \frac{x^3 - 4x}{x - 1} \ge 0$$

$$\Leftrightarrow \frac{x^3 - x^2 - x^3 + 4x}{x - 1} \ge 0$$

$$\Leftrightarrow \frac{-x^2 + 4x}{x - 1} \ge 0$$

$$\Leftrightarrow \frac{x(4 - x)}{x - 1} \ge 0$$

On étudie le signe du quotient à l'aide d'un tableau de signe :

x	0	-	1	4		+∞
4-x		+	+	0	_	
x-1		_	+		+	
$\frac{x(4-x)}{x-1}$	0	-	+	0	_	

Donc

$$x \geqslant \sqrt{\frac{x^3 - 4x}{x - 1}} \Leftrightarrow x \in [1, 4] \cup \{0\}$$

Mais comme on résout sur $]-\infty;-2]\cup[0;1[\cup[2;+\infty[$, l'ensemble des solutions sur \mathbb{R}^+ est $[2,4]\cup\{0\}$. Donc, l'ensemble des solutions de l'inéquation sur \mathbb{R} est $[2,4]\cup\{0\}$.

2. Soit $x_0 \in \mathbb{R}$,

La fonction f est définie en
$$x\Leftrightarrow \begin{cases} x_0-\sqrt{\frac{x_0^3-4x_0}{x_0-1}}\geqslant 0 \text{ car la fonction } x\mapsto \sqrt{x} \text{ est définie sur } \mathbb{R}^+\\ x\mapsto x-\sqrt{\frac{x^3-4x}{x-1}} \text{ est définie en } x_0\\ \Leftrightarrow \begin{cases} x_0\in[2,4]\cup\{0\}\\ x_0\neq 1\\ x_0\in]-\infty;-2]\cup[0;1[\cup[2;+\infty[$$

en utilisant les résultats de la question précédente.

Donc f est définie sur $\mathcal{D}_f = [2, 4] \cup \{0\}$.

4. Soit $x_0 \in [2,4] \cup \{0\}$,

La fonction f est dérivable en
$$x_0 \Leftrightarrow \begin{cases} x_0 - \sqrt{\frac{x_0^3 - 4x_0}{x_0 - 1}} > 0 \text{ car la fonction } x \mapsto \sqrt{x} \text{ est dérivable sur } \mathbb{R}_+^* \\ x \mapsto x - \sqrt{\frac{x^3 - 4x}{x - 1}} \text{ est dérivable en } x_0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_0 \in [2, 4[\text{ d'après la question 1.} \\ x_0 - 1 \neq 0 \\ \frac{x_0^3 - 4x_0}{x_0 - 1} > 0 \text{ car la fonction } x \mapsto \sqrt{x} \text{ est dérivable sur } \mathbb{R}_+^* \end{cases}$$

$$\Leftrightarrow \begin{cases} x_0 \in [2, 4[\\ x_0 \in] - \infty; -2[\cup]0; 1[\cup]2; +\infty[\text{ d'après la question 1.} \end{cases}$$

On trouve que f est dérivable sur]2,4[. Et pour tout $x \in]2,4[$,

$$f'(x) = \frac{1}{2\sqrt{x - \sqrt{\frac{x^3 - 4x}{x - 1}}}} \left(1 - \frac{1}{2\sqrt{\frac{x^3 - 4x}{x - 1}}} \frac{2x^3 - 3x^2 + 4}{(x - 1)^2} \right).$$