Devoir Maison 4

- Soignez la présentation.
- Vos conclusions doivent toujours être encadrées.
- Soyez précis dans votre rédaction.

Exercice 1.

Les questions 1, 2 et 3 sont indépendantes.

1. Soit $n \in \mathbb{N}^*$. On définit

$$S_n = \sum_{k=0}^n ((k+1)^4 - k^4), \quad T_n = \sum_{k=0}^n k^3, \quad D_n = \sum_{k=0}^n k^2.$$

(a) Compléter le programme suivant pour qu'il affiche le plus petit entier n tel que $S_n > M$ où M est un réel donné par l'utilisateur.

```
M= ....
n=0
S=0
while S <=M:
    S=S +....
    n=....
```

- (b) Que vaut D_n ? Démontrer ce résultat.
- (c) Calculer S_n .
- (d) Exprimer S_n en fonction T_n et D_n .
- (e) En déduire la valeur de T_n .
- 2. Soit $n \in \mathbb{N}^*$. Calculer $\sum_{1 \leq i \leq j \leq n} 2^{i+j}$
- 3. Soit $n \in \mathbb{N}^*$. On considère la somme $U_n = \sum_{k=0}^n \binom{n+k}{k}$, ainsi que le programme Python suivant :

```
def F(n):
    if (n==1):
        return n
    else:
        return n*F(n-1)
```

- (a) i. Que renvoie F(1)? F(2)? F(3)? F(4)?
 - ii. Expliquer ce que calcule la fonction F.
 - iii. Écrire une fonction Python CoeffBin qui prend en entrée deux nombres entiers positifs k et n et qui renvoie le résultat de $\binom{n}{k}$. Pour cela, on fera appel à la fonction F, et on distinguera les cas $k \le n$ et k > n.
- (b) i. Calculer U_2 .
 - ii. Justifier que $U_n = \sum_{k=0}^n \binom{n+k}{n}$ puis en déduire que $U_n = \sum_{i=n}^{2n} \binom{i}{n}$.
 - iii. Montrer que, pour tout entier naturel i supérieur ou égal à n+1, on a

$$\binom{i}{n} = \binom{i+1}{n+1} - \binom{i}{n+1}$$

iv. En déduire la valeur de U_n .

Exercice 2.

Soit les nombres complexes :

$$z_1 = \sqrt{2} + i\sqrt{6}$$
, $z_2 = 2 + 2i$ et $Z = \frac{z_1}{z_2}$.

- 1. Écrire Z sous forme algébrique.
- 2. Donner les modules et arguments de z_1 , z_2 et Z.
- 3. En déduire $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.
- 4. Le plan est muni d'un repère orthonormal; on prendra 2 cm comme unité graphique. On désigne par A, B et C les points d'affixes respectives z_1 , z_2 et Z. Placer le point B, puis placer les points A et C en utilisant la règle et le compas (on laissera les traits de construction apparents).
- 5. Écrire sous forme algébrique le nombre complexe $\mathbb{Z}^{2025}.$