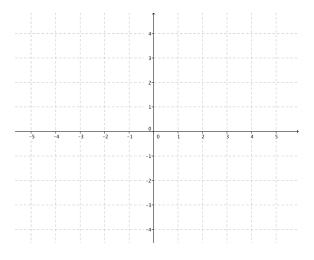
Nom:

Prénom:

Exercice 1:

- 1. Soit $z = a + ib \in \mathbb{C}$, donner 2 formules permettant de calculer le module de z.
- 2. Enoncer les inégalités triangulaires.
- 3. Soit $\theta \in \mathbb{R}$. Donner la définition de $e^{i\theta}$

Exercice 2:


Déterminer les formes algébriques des complexes z_B , z_C , z_D . Puis placer les points $A,\,B,\,C,\,D$ d'affixe respective $z_A,\,z_B$ et z_C .

$$z_A = -1 - 3i$$

$$z_B = i(1+3i) =$$

$$z_C = (1-i)(2+2i) =$$

$$z_D = \frac{1-i}{1+i} =$$

Exercice 3 : Déterminer les conjugués des nombres complexes suivant :

$$z_1 = 2 + 3i$$

$$z_2 = -i$$

Exercice 4 : Calculer les modules des nombres complexes :

$$z_1 = 1 + i$$

$$z_2 = (2 - 3i)(1 + 2i)$$

$$z_3 = \frac{2 - 3i}{2 + i}$$

Exercice 5 : Soit z un nombre complexe de module 1 (|z|=1).

Montrer que le nombre complexe $Z = 2z + \frac{2}{z}$ est un nombre réel.