
Bio1B Programme de Mathématiques

Semaine n°15 du 19 au 23 janvier

Informatique(Python) : cf exemples en annexe

➟ boucle while, boucle for,.

➟ listes en Python : création d’une liste, extraction d’un élément, parcours d’une liste, concaténation,
len, append...etc

Suites usuelles

➟ Variation d’une suite, suite majorée, minorée, bornée.

➟ suite arithmétique : définition, terme général en fonction de n, somme des termes d’une suite arithmétique.

➟ suite géométrique : définition, terme général en fonction de n, somme des termes d’une suite géométrique.

➟ suite arithmético-géométrique : définition, méthode pour déterminer le terme général en fonction de
n.

➟ suite récurrente linéaire d’ordre 2 : définition, équation caractéristique, détermination du terme général
en fonction de n.

➟ Théorème sur les limites d’une suite : théorème de la limite monotone, théorème des gendarmes,
théorème de comparaison.

Applications

➟ Définitions : application, image, antécédent.

➟ Application identité, application nulle, fonction indicatrice.

➟ Image d’une partie de l’ensemble de départ pour une application f : E → F :

f(A) = {f(x)|x ∈ A}
➟ Surjection : définition, méthode pour montrer qu’une application est surjective (en résolvant l’équation

f(x) = y)

➟ Injection : définition, méthode pour montrer qu’une application est injective (∀(a, b) ∈ E2, f(a) =
f(b) ⇒ a = b)

➟ bijection : définition, méthodes pour montrer qu’une application est bijective (en montrant qu’elle est
injective et surjective ou en montrant que l’équation f(x) = y où y ∈ F admet une unique solution
dans E, ou encore en utilisant le théorème de la bijection) ou qu’elle n’est pas bijective.

➟ Composition de deux applications.

➟ Application réciproque d’une bijection : définition, méthode pour trouver son expression, propriétés
(f−1 ◦ f = IdE , f ◦ f−1 = IdF , symétrie des représentations graphiques par rapport à la droite
d’équation y = x)

➟ La composée de deux bijections est bijective et (g ◦ f)−1 = f−1 ◦ g−1.

Systèmes linéaires

➟ Définitions : système linéaire à n équations et p inconnues, solutions d’un système, systèmes équivalents,
système compatible.

➟ Système échelonné : définition, méthode de résolution, rang d’un système échelonné, rang maximal,
ensemble de solutions en fonction du rang, nombre de solutions d’un système échelonné.

➟ Méthode du pivot de Gauss pour échelonner un système.

➟ Rang d’un système linéaire quelconque, nombre de solutions d’un système linéaire.

➟ Système de Cramer : définition, un système de Cramer admet une unique solution.

➟ Exemples de résolution de système avec paramètre.

Remarques aux colleurs

— Merci aussi de poser une petite question d’informatique (cf Annexe).

1



Bio1B Programme de Mathématiques

Exemples de programmes informatiques

Exercice 1

Ecrire en Python une fonction existence qui prend en entrée une liste L et un nombre element et renvoie
True si element se trouve dans la liste L, False sinon.

def existence(L,element):

n=len(L) # taille de la liste

for i in range(n):

if L[i]==element:

return True

return False # si on n’ a pas trouvé element après avoir parcouru toute la liste

Exercice 2

Ecrire en Python une fonction MaximumListe qui prend en entrée une liste L et renvoie la plus grande valeur
de cette liste
def MaximumListe(L):

n=len(L) #taille de la liste

maxi=L[0] #on considère temporairement que le max est le premier élément

for i in range(n):

if L[i]>maxi:

maxi=L[i] #on a trouvé une plus grande valeur

return maxi

Exercice 3

Ecrire en Python une fonction Somme qui prend en entrée une liste L et renvoie la somme de ses éléments :

def Somme(L):

n=len(L) #taille de la liste

S=0 #initialisation de la somme

for i in range(n):

S=S+L[i]

return S

Exercice 4

Ecrire une fonction experience qui prend en paramètre un entier n et simule n lancers successifs d’une pièce
de monnaie équilibrée en renvoyant une liste aléatoire composée de n valeurs égales à 0 ou 1. On considérera
que 0 correspond à Face et 1 à Pile.
from random import * # bibliothèque nécessaire pour créer des nombres aléatoires

def experience(n):

L=[] #liste vide initialement

for i in range(n):

L.append(randint(0,1)) # 0 ou 1 choisi de manière aléatoire

return L

2


