BiolB Programme de Mathématiques

Semaine n°16 du 26 janvier au 30 janvier

Informatique(Python) : cf exemples en annexe

=

listes en Python : création d’une liste, extraction d’un élément, parcours d’une liste, concaténation,
len, append...ctc

Applications

Iy

=

=S

=S

Définitions : application, image, antécédent.

Application identité, application nulle, fonction indicatrice.

Image d’une partie de I’ensemble de départ pour une application f: E — F :

fA) ={f(z)]z € A}

Composition de deux applications.

Surjection : définition, méthode pour montrer qu'une application est surjective (en résolvant I’équation
f@)=yv)

Injection : définition, méthode pour montrer qu’une application est injective (V(a,b) € E?, f(a) =
F(b) = a=b)

bijection : définition, méthodes pour montrer qu'une application est bijective (en montrant qu’elle est

injective et surjective ou en montrant que I’équation f(z) = y ou y € F admet une unique solution
dans E, ou encore en utilisant le théoreme de la bijection) ou qu’elle n’est pas bijective.

Application réciproque d’une bijection : définition, méthode pour trouver son expression, propriétés
(flof = Idg, fo f~! = Idp, symétrie des représentations graphiques par rapport a la droite
d’équation y = x)

La composée de deux bijections est bijective et (go f)~! = f~tog™L

Systemes linéaires I

=S

=

Définitions : systeme linéaire a n équations et p inconnues, solutions d’un systeme, systemes équivalents,
systeme compatible.

Systeme échelonné : définition, méthode de résolution, rang d’un systeme échelonné, rang maximal,
ensemble de solutions en fonction du rang, nombre de solutions d’un systéme échelonné.

Méthode du pivot de Gauss pour échelonner un systéme.
Rang d’un systéme linéaire quelconque, nombre de solutions d’un systeme linéaire.
Systeme de Cramer : définition, un systeme de Cramer admet une unique solution.

Systemes et géométrie : interprétation géométrique d’un systéme linéaire & deux inconnues (intersection
de droites du plan), interprétation géométrique d’un systéme a trois inconnues (intersection de plans
de l'espace).

Exemples de résolution de systeme avec parametre.

dénombrement '

=

Cardinal d’un ensemble : définition, cardinal d’un sous-ensemble, lien avec les ensembles de départ et
d’arrivée des applications injectives, surjectives, bijectives (cas particulier d’une application ayant un
ensemble de départ et d’arrivée de méme cardinal).

Cardinal d’'une union : disjointe de deux ensembles, disjointe de n ensembles, union quelconque de
deux ensembles.

Cardinal d’un produit cartésien.
p-liste sans répétition : définition, nombre de p-listes sans répétition d’un ensemble & n éléments.

permutations : définition, nombre de permutations d’un ensemble.



BiolB Programme de Mathématiques

w combinaisons : définition, nombre de p-combinaisons d’un ensemble a n éléments.

Remarques aux colleurs.

— Merci aussi de poser une petite question d’informatique (cf Annexe).
— Le cours Dénombrement n’a pas été traité en TD. Pouvez vous poser des question sur le chapitre
uniquement en question de cours ?

Exemples de programmes informatiques I

Exercice 1

Ecrire en Python une fonction existence qui prend en entrée une liste L et un nombre element et renvoie
True si element se trouve dans la liste L, False sinon.

def existence(L,element):
n=len(L) # taille de la liste
for i in range(n):
if L[i]l==element:
return True
return False # si on n’ a pas trouvé element aprés avoir parcouru toute la liste

Exercice 2

Ecrire en Python une fonction MaximumListe qui prend en entrée une liste L et renvoie la plus grande valeur
de cette liste
def MaximumListe(L):

n=len(L) #taille de la liste

maxi=L[0] #on considére temporairement que le max est le premier élément

for i in range(n):

if L[i]>maxi:
maxi=L[i] #on a trouvé une plus grande valeur
return maxi

Exercice 3

Ecrire en Python une fonction Somme qui prend en entrée une liste L et renvoie la somme de ses éléments :
def Somme (L) :
n=len(L) #taille de la liste
S=0 #initialisation de la somme
for i in range(n):
S=S+L[i]
return S

Exercice 4

Ecrire une fonction experience qui prend en parametre un entier n et simule n lancers successifs d’une piece
de monnaie équilibrée en renvoyant une liste aléatoire composée de n valeurs égales a 0 ou 1. On considérera
que 0 correspond a Face et 1 a Pile.
from random import * # bibliothé&que nécessaire pour créer des nombres aléatoires
def experience(n):

L=[] #liste vide initialement

for i in range(n):

L.append(randint(0,1)) # 0 ou 1 choisi de maniére aléatoire
return L




