BCPST1 A&B

CORRIGE DU DEVOIR SURVEILLE 4

Exercice 1.
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2. Soit 0;1 = =r———=.D VY. 0; 1, —=2— ——.
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Donc / %dm = / x — %dm = / xdr — / * 5 dx par linéarité de I'intégrale. On obtient
0 1+ 0 1+x 0 0 1+x

3. D’apres la question précédente, Vo € [0 ; 1]

1 1 In(2)
Jo==—Jy= - — .
279 0Ty 2

4. Soit n € N, pour tout z € [0;1] 2" > 0 et 1+ 22 > 1. Or la fonction In est croissante sur Rj. Donc
In(1+2?) > 0. Par produit pour tout z € [0;1] ™ In(1+2?) > 0 Comme 0<1, par positivité de I'intégrale,
\VneN, I, > 0.

5. Soit n € N, et soit x € [0 ; 1],

z <1 donc 2" < 2™ car 2" est positif

donc 2" In(1 + 22) < 2" In(1 + 2?) car In(1 4 z?) est positif puisque 1+ 2 > 1

donc‘Vx €[0; 1], YneN, 2" In(1 4+ 2?) < 2" In(1 + 2?)
6. Comme 0<1, par croissance de 'intégrale, pour tout n € N, I,11 < I,. Onadonc Vn € N, I,,11 < I, la

suite ’ (I,) est décroissante. ‘

7. Lasuite (I,)nen est décroissante minorée donc d’apres le théoréme de limite monotone, la suite‘ (I,,) est convergente.

8. Soit n € N, soit z € [0 ; 1]

n

T
0< <1 donc 0 < T < 2" car 2" >0

1422 - + z2

Comme 0<1, par croissance de l'intégrale,

1
OSJnS/ :c"“dxzi.
1
Donc |Vn € N, 0< J, <
n+2
9. Comme Vn € N, 0< J, < et que lim = 0, d’aprés le théoréme des gendarmes la
n 4+ n—+oon + 1
suite (J,,) converge et | lim J, =0.
n—+o0o

Exercice 2.

1. (a) La fonction y est est deux fois dérivable. Comme la fonction cosinus est aussi deux fois dérivable sur
I, la fonction z est deux fois dérivable sur I par produit. De plus,

‘Vx €l, 2(x)=—sin(z)y(x)+cos(z)y'(x) et 2'(z)=—cos(z)y(z)— 2sin(z)y'(z) + cos(z)y” (z) ‘

(b) On a:

y est solution de (%) sur [ <= Vz € I, cos(x)y” (x) — 2sin(z)y’(z) + 3cos(z)y(z) = 1
< Vo el, (—cos(z)y(z) — 2sin(z)y (z) + cos(z)y” (z) ) + 4 cos(z)y(z) =1

=z""(z) =z(z)

— Vzel, 2'(z)+4z2(z) =1

donc | y est solution de (%) sur I si et seulement si z est solution de (%x) ‘ sur I.




2. % L’équation différentielle (x*) est linéaire du second ordre a coefficients constants.

* Son équation homogéne est z”/ 44z = 0, Péquation caractéristique associée est 2 +4 = 0. Elle admet
deux racines complexes qui sont *2i. On en déduit que ’ensemble des solutions de (H) est :

{# — Acos(2z) + Bsin(2z)| (4, B) € R?}

* Une solution particuliére de (%) est la fonction z — 1

* D’aprés la théoréme fondamental, ’ensemble des solutions de (k%) est :

1
{x — Acos(2x) + Bsin(2z) + 1 ‘ (A,B) € R2}

3. D’apres les questions 1.(b) et 2., on en déduit donc que I’ensemble des solutions de (x) est :

A cos = 1
{x . cos(2z) + Bsin(2x) + ;
cos(x)

(A,B) € R2}

Acos(2 Bsin(2 1
4. Soient (A,B)ER2 et la fonction y : z —— cos(2z) + Bsin(2z) + §
cos(x)
1 T B+1
Onay(O)—A—l—zety(Z)_ 72 donc :
= A+i=0 A= _1
{ y(o)_o 4 1
™ — —

cos(2x sin(2x 1
(20) sin(2r) |

Donc | le probléme de Cauchy admet pour unique solution la fonction  — — 1 1 -

Probléme 1.

I — Modélisation informatique

1. (a) On utilise 'affectation simultanée a,b=b,a et une boucle for.

def antilopetigre(n)
a=2
t=2
for k in range(n-1)
a,t = 2%a-3xt+4, a-t
return a, t

(b)| from math import *
def serpent(n)
s1=2
s2=5
if n==1:
return si
else :
for i in range(3,n+1):
ssuivant=floor (s2**2/s1)-1
s1=s2
s2=ssuivant
return s2

(¢) La fonction antilopetigre renvoie deux nombres a et t.

def nombre(n)
a, t = antilopetigre(n)
s = serpent(n)
return att+s

2. Cette fonction prend en entrée un nombre seuil a (de serpents) et renvoie la premiére année a partir de
laquelle la réserve contient au moins a serpents.



II — Evolution des population d’antilopes et de tigres

. En remplacant n par 1 dans les relations de récurrence, on a ‘ ag =2etta =0]|

. Soit n € N*. Alors :

Ap42 = 2(Ln+1 - 3tn+1 +4 = 2an+1 — 3(an — tn) +4 = 2an+1 — 3an + 3tn +4
Or, d’aprés la premiére équation donnée dans I’énoncé, on a 3t, = —a,+1 + 2a, + 4 donc :

Gp+o = 2ap41 — 3ap — Apy1 +2a, +4+4=0apy1 —a, +8

Finalement, ‘pour tout n € N*, on a ani2 = apy1 — an +8 ‘

. Soit n € N*. Alors :

An+2 - (AnJrl - An) = Qp+4+2 — 8 — (an+1 - 8- (an - 8)) = Ap+2 — Ap41 +an, — 8§=0

d’aprés la question II-2. Donc ’ pour tout n € N* on a bien A, 40 = A1 — 4, ‘

. La suite (A, )nen- est récurrente linéaire d’ordre deux. L’équation caractéristique associée est 2 = x — 1
soit encore 22 — x + 1 = 0. Son discriminant vaut —3 < 0 donc cette équation admet deux racines

1+1\/§ i 1—1[

. T
et ———— = e '3. Il existe alors (A4, B) € R? tel que pour tout

wly

complexes qui sont

n € N*, on ait 4, —Acos (n

e
) + Bsin ( ) Déterminons les valeurs de A et B. On a tout d’abord
Al—a1—8——6etA2—a2 8

m
3
—8=—6 (car a1 = as = 2) donc :

A1:76{:)A+\/§B:712L1
As = —6 —A 4+ V3B = -—-12 1L,
— A + V3B = -12 L
2v3B = —-24 Lo+« Lj+1Ls
{A = 0
< _ Q__12\/§__
B = == 4/3

Finalement, | pour tout n € N*, on a A, = —4+/3sin (n%) )

. Pour tout n € N*, on sait que a, =8 + A,, donc :

VneN*,  a,=8—4v3sin (ng)

. Aucune des deux suites ne tend vers 0 quand n tend vers +o0o; plus précisément, les valeurs prises par
(an)nen+ et (tn)nen+ oscillent respectivement autour de 8 et 4 et les suites divergent (elles ne convergent
vers aucune limite) donc :

‘ aucune des deux espéces ne tend a disparaitre selon le modéle proposé ‘

III — Evolution de la population de serpents

2 25
1. On a 33:{82J—1:{J—1:12—1:11.
S1 2

2. (a) La suite (uy)nen+ est arithmético-géométrique. Soit £ € R. On résout :

(=241 <= (=-1

Soit n € N*. Posons v,, = u,, — (—1) = u,, + 1. D’une part u,+1 = 2u, + 1 et d’autre part, £ = 2+ 1.
En soustrayant la deuxiéme équation a la premiére, il vient w41 — € = 2u, +1—(20+1) = 2(u, — £).
La suite (vy,)nen+ est donc géométrique de raison 2 et de premier terme v; = u; + 1 = 3. Pour tout
n € N* on a alors v, = v1 x 2"t =3 x 2”1 et comme u, = v, — 1, il vient :

‘VneN*, up =3x2" 11




(b) Soit n € N*. Alors (uni1)? = (3x2" —1)> =9 x 2" — 6 x 2" + 1 donc

2 2n n
(ur:::) _Un+2:9><?2)><2n(j1><_21+1 S (3x2m 1)
9x 27 —6x2"+1—(3x2"H —1) (3x 2" —1)
B 3x2n1—1
99X 2 —6x 2"+ 1 -9 x 2243 x 2432 ]
B 3x2n-l—1
9x 22 —6Xx2"+1—-9x 2246 x2"+3x2" 1 —1
- 3x2n-1 -1
o 3x2n!
S 3x 2l
(1+3x2"71)—1
T 3x2nio1
" Upt1)? 1
et donc | Vn € N*, (un) —un+2:1+73><2n*1_1

(¢) Soit m € N*. D’aprés la question III-2.(b), on a :

(Un+1)2
At = |y, 14—
{ Un Unt2t +3><2"—1—1
1 1
Commen}l,ona3x2”71—1>2etdonc0<7<7etdonc:
3x2n-1_1 2

1
Upto +1 < tupqo+1+ <Un+2+1+§<(un+2+1)+1

3x2n-l -1
Or on sait que uy,12 (et donc u,2+1) est un entier (d’aprés la question ITI-2.(a)) donc, par définition
de la partie entiére, on a :

\‘un+2+1+ J :un+2+1

3x2n-1 -1

(un+1)2

Finalement, {
Un

_ . * _ (un+1)2
= Up4+2 + 1 et donc ;| Vn € N¥| Upyo = |—— | — 1
un

(d) On montre enfin par récurrence que pour tout n € N*, on a s, = uy,.
Probléme 2
Partie A : Etude d’une application
1. Etude de l’injectivité de f.
(a) Soit z € R*. Alors

1 2 2
— = €z = €z X —= — = €T
f(ﬂc) 1+ (1) 1+ 27 22+1 /(@)

1
Par conséquent, | pour tout x € R*, on a f() = f(z) |
x

1 4
(b) D’apres la question précédente, on a par exemple (pour z = 2) :f(2> = f(2) = R

4 1
Donc le nombre 5 admet au moins deux antécédents par f dans R qui sont — et 2.

Par conséquenm‘ I’application f n’est pas injective‘

2. Etude de la surjectivité de f.

(a) Soit z € R. On a (z —1)? > 0 donc, en développant, z° — 2z 4+ 1 > 0, ce qui se réécrit z2 + 1 > 2.
En développant (z + 1)2, qui est positif ou nul, on trouve également que z2 + 1 > —2z. Donc

‘pourtouthR7 ona2m<1+xzet 72x<1+x2‘

(b) Soit € R. D’aprés les inégalités de la question précédente, on a —(1 + %) < 22 < 1+ 22 Or
2

14+ 2% > 0donc —1 < _r

1422

2
< 1. Finalement, | pour tout x € R, on a —1 < f(z) < 1 ‘




(¢) On sait que, pour tout € R, on a —1 < f(x) < 1. Donc I’équation f(x) = 2 n’admet pas de solution
dans R. Autrement dit, le nombre 2 € R n’admet pas d’antécédent par f dans R. On en conclut que

‘l’application f n’est pas surjective‘

3. Rendre f bijective.
(a) On commence par étudier les variations de I'application f sur son domaine de définition. La fonction
f est dérivable sur R (comme quotient de fonctions qui le sont) et, pour tout nombre réel x, on a
2(1+2?%) — 2z x 2z 2+22® —42? 2-22  2(1-=z)(1+ax)

IO =""rey =~ d+or arer. (+oP

et le signe de f’(z) est celui de (1 — z)(1 + x). On en déduit le tableau de signes de f’ et le tableau
de variations de f suivant :

x -00 -1 1 +00
1—=2 + + 0 -
1+ - 0 + +
1 (x) - 0 + 0 -
0 1
1 0

On trouve donc que ‘ f(-1,1]) = [-1,1] ‘

(b) Soit y € f([-1,1]) = [-1,1]. On résout I’équation y = g(x) d’inconnue z € [—1,1].
Soit z € [—1,1].

2x
14 22

On distingue deux cas.

g(z) =y = =y = 22=y(1+2%) <= 2x=y+y2’> < yz’ - 20 +y=0

* Premier cas : y = 0. Alors
gx) =0 <= 22=0 <= =0

et donc 0 admet un unique antécédent dans [—1, 1] par I'application g qui est 0.

x Deuxiéme cas : y € [—1,1]\ {0}. Alors yz? — 2z +y = 0 est une équation du second degré
(puisque y # 0) dont le discriminant vaut (—2)? —4 x y x y = 4(1 — y?). Si y = 1, alors on a une
unique racine qui est x = 1 tandis que si y = —1, alors on a une unique racine qui est z = —1.
Supposons maintenant que y €] — 1, 1[\{0}. Alors le discriminant est strictement positif et donc
I’équation admet donc deux solutions dans R qui sont

2+ /41 —-y?) t2—\/4(1—yz) 1++/1—92 t1—«/1—y2
e e
2y 2y Y Y
Il reste a vérifier qu’il n’y a qu’une seule de ces deux solutions qui appartient a Uintervalle [—1,1].

Onal-— y2 > 0 puisque y €] — 1,1 donc /1 — y2 > 0 car la fonction racine carrée est strictement

1 1— 92
croissante sur R;. Donc 14++/1 — y2 > 1. On en déduit donc que, si y €]0, 1], alors Rl T >
Y

1+ /1 —92 1 1+ /1 —92

I+tvizy® 1 Hgé[—l,l}.Par
Y Y

contre, pour tout y € [—1,1]\ {0}, on a

VITP VTR VTR)

_ = €[-1,1]
Yy y(1+ /1 —9?) 1+ 1—92
1+\/17y2¢[ 1]

y K
donc son inverse appartient a l'intervalle [—1, 1]. Finalement, le nombre y admet un et un seul
1—1—92

Y

c’est-a -dire

1
— > letsiye€]—1,0] alors < —1. Par conséquent,
Y

1++/1492

car on a montré précédemment que , donc — ¢ [-1,1] et

antécédent par g dans lintervalle [—1, 1] qui est



On en conclut donc que

I’application g est bijective ‘ et,

0 siy=20
vwel-11, ¢ W=9 1-/I_42
VY iy -1\ {0}
Y
car ’antécédent obtenu précédemment reste valable pour y = —1 et y = 1.
Partie B : Suite et python
1. def £(x): 2. def min(L):
return 2xx/(x**2+1) m=L[0]
def suite(n,u0): for i in range(len(L)):
u=u0 if m>L[i]:
L=[ul] m=L[1i]
for i in range(n): return m
u=(-1)**xixf (u)
L.append (u) 3. def minimumsuite(n,u0):
return(L) return min(suite(n,u0))

Partie C : Une équation différentielle

1. Soit = € R.
On pose Vt € R,
u'(t)=e" et u'(t)=¢'
v(t) =t et v(t)=1.

Les fonctions u et v sont de classe C* sur R donc par intégration par parties,

T T
/ teldt = [tet]g - / eldt = ze” — [et]g =ze® — (" —1)=uxe® —e"+1
0 0
2. (E) est une équation différentielle linéaire d’ordre 1.

2
Soit (H) : y'(z) + %ﬂy(z) = 0 l’équation homogéne associée.
x

G est une fonction continue sur R donc elle admet une primitive. Prenons z + In(z? + 1).
x
L’ensemble des solutions de (H) est donc

SH:{xHCeln(w2+1)’C€R}:{$n—> ’CER}

2 +1
C(z)

x2+101‘10

On cherche une solution particuliére y, de (E) par variation de la constante. Soit y, : z —

est une fonction dérivable sur R. )
—2x

Yp est dérivable sur R et pour tout z € R, y,(z) = C'(x) e
T

R + C(x)

Y, est solution de (E) donc pour tout = € R,
1 —2z 2z C(x) xe®
/ =
O(x)x2+1+c(x)(:c2+l)2+m2+1m2+1 z2+1

— C'(z) = xe”

D’aprés la question 1 de la partie C, une primitive de x — €” est x — ze® — e” + 1. Ainsi, on a
ze® —e” +1
x24+1
D’aprés le théoréme fondamental, ’ensemble des solutions de (F) est

T ot 4]
SE:{ € zei-ec+ ’CER}

Yp 1 T > qui est solution de (E).

2 +1 2 41
+xeg”—eI—ﬁ—l
2 +1 241

1
Onay(l):1<:>%+§:1<:>0:1.

3. Soit CeRety:x—

Donc le probléme de Cauchy admet pour unique solution

= 1 +xe“’—e”’+1 it er”’—ex+2
T soit ¥ — ——————
241 241 241




