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Corrigé du Devoir surveillé 4
Exercice 1.

1. J0 =

∫ 1

0

x

1 + x2
dx =

[
1

2
ln(|1 + x2|)

]1
0

=
ln(2)

2
.

2. Soit x ∈ [0 ; 1],
x3

1 + x2
=

x3 + x− x

1 + x2
= x− x

1 + x2
. Donc ∀x ∈ [0 ; 1],

x3

1 + x2
= x− x

1 + x2
.

3. D’après la question précédente, ∀x ∈ [0 ; 1],
x3

1 + x2
= x− x

1 + x2
.

Donc
∫ 1

0

x3

1 + x2
dx =

∫ 1

0

x − x

1 + x2
dx =

∫ 1

0

xdx −
∫ 1

0

x

1 + x2
dx par linéarité de l’intégrale. On obtient

J2 =
1

2
− J0 =

1

2
− ln(2)

2
.

4. Soit n ∈ N, pour tout x ∈ [0; 1] xn ≥ 0 et 1 + x2 ≥ 1. Or la fonction ln est croissante sur R+
∗ . Donc

ln(1+x2) ≥ 0. Par produit pour tout x ∈ [0; 1] xn ln(1+x2) ≥ 0 Comme 0<1, par positivité de l’intégrale,
∀n ∈ N, In ≥ 0.

5. Soit n ∈ N, et soit x ∈ [0 ; 1],

x ≤ 1 donc xn+1 < xn car xn est positif

donc xn+1 ln(1 + x2) < xn ln(1 + x2) car ln(1 + x2) est positif puisque 1 + x2 ≥ 1

donc ∀x ∈ [0 ; 1], ∀n ∈ N, xn+1 ln(1 + x2) < xn ln(1 + x2)

6. Comme 0<1, par croissance de l’intégrale, pour tout n ∈ N, In+1 < In. On a donc ∀n ∈ N, In+1 < In la
suite (In) est décroissante.

7. La suite (In)n∈N est décroissante minorée donc d’après le théorème de limite monotone, la suite (In) est convergente.

8. Soit n ∈ N, soit x ∈ [0 ; 1]

0 ≤ 1

1 + x2
≤ 1 donc 0 ≤ xn

1 + x2
≤ xn+1 car xn+1 ≥ 0

Comme 0<1, par croissance de l’intégrale,

0 ≤ Jn ≤
∫ 1

0

xn+1 dx =
1

n+ 2
.

Donc ∀n ∈ N, 0 ⩽ Jn ⩽
1

n+ 2

9. Comme ∀n ∈ N, 0 ⩽ Jn ⩽
1

n+ 1
et que lim

n→+∞

1

n+ 1
= 0, d’après le théorème des gendarmes la

suite (Jn) converge et lim
n→+∞

Jn = 0.

Exercice 2.

1. (a) La fonction y est est deux fois dérivable. Comme la fonction cosinus est aussi deux fois dérivable sur
I, la fonction z est deux fois dérivable sur I par produit. De plus,

∀x ∈ I, z′(x) = − sin(x)y(x) + cos(x)y′(x) et z′′(x) = − cos(x)y(x)− 2 sin(x)y′(x) + cos(x)y′′(x)

(b) On a :

y est solution de (⋆) sur I ⇐⇒ ∀x ∈ I, cos(x)y′′(x)− 2 sin(x)y′(x) + 3 cos(x)y(x) = 1

⇐⇒ ∀x ∈ I,
(
− cos(x)y(x)− 2 sin(x)y′(x) + cos(x)y′′(x)︸ ︷︷ ︸

=z′′(x)

)
+ 4 cos(x)y(x)︸ ︷︷ ︸

=z(x)

= 1

⇐⇒ ∀x ∈ I, z′′(x) + 4z(x) = 1

donc y est solution de (⋆) sur I si et seulement si z est solution de (⋆⋆) sur I.
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2. ⋆ L’équation différentielle (⋆⋆) est linéaire du second ordre à coefficients constants.
⋆ Son équation homogène est z′′+4z = 0, l’équation caractéristique associée est x2+4 = 0. Elle admet

deux racines complexes qui sont +− 2 i. On en déduit que l’ensemble des solutions de (H) est :{
x 7−→ A cos(2x) +B sin(2x)

∣∣ (A,B) ∈ R2
}

⋆ Une solution particulière de (⋆⋆) est la fonction x −→ 1

4
.

⋆ D’après la théorème fondamental, l’ensemble des solutions de (⋆⋆) est :{
x 7−→ A cos(2x) +B sin(2x) +

1

4

∣∣∣∣ (A,B) ∈ R2

}

3. D’après les questions 1.(b) et 2., on en déduit donc que l’ensemble des solutions de (⋆) est :{
x 7−→

A cos(2x) +B sin(2x) + 1
4

cos(x)

∣∣∣∣ (A,B) ∈ R2

}

4. Soient (A,B) ∈ R2 et la fonction y : x 7−→
A cos(2x) +B sin(2x) + 1

4

cos(x)
.

On a y(0) = A+
1

4
et y

(π
4

)
=

B + 1
4√

2
2

donc :

{
y(0) = 0
y
(
π
4

)
= 0

⇐⇒

{
A+ 1

4 = 0

B + 1
4 = 0

⇐⇒

{
A = − 1

4

B = − 1
4

Donc le problème de Cauchy admet pour unique solution la fonction x 7−→ −cos(2x)

4
− sin(2x)

4
+

1

4
.

Problème 1.

I – Modélisation informatique

1. (a) On utilise l’affectation simultanée a,b=b,a et une boucle for.

def antilopetigre(n) :
a=2
t=2
for k in range(n-1) :

a,t = 2*a-3*t+4, a-t
return a, t

(b) from math import *
def serpent(n) :

s1=2
s2=5
if n==1:

return s1
else :

for i in range(3,n+1):
ssuivant=floor(s2**2/s1)-1
s1=s2
s2=ssuivant

return s2

(c) La fonction antilopetigre renvoie deux nombres a et t.

def nombre(n) :
a, t = antilopetigre(n)
s = serpent(n)
return a+t+s

2. Cette fonction prend en entrée un nombre seuil a (de serpents) et renvoie la première année à partir de
laquelle la réserve contient au moins a serpents.
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II – Évolution des population d’antilopes et de tigres

1. En remplaçant n par 1 dans les relations de récurrence, on a a2 = 2 et t2 = 0 .

2. Soit n ∈ N∗. Alors :

an+2 = 2an+1 − 3tn+1 + 4 = 2an+1 − 3(an − tn) + 4 = 2an+1 − 3an + 3tn + 4

Or, d’après la première équation donnée dans l’énoncé, on a 3tn = −an+1 + 2an + 4 donc :

an+2 = 2an+1 − 3an − an+1 + 2an + 4 + 4 = an+1 − an + 8

Finalement, pour tout n ∈ N∗, on a an+2 = an+1 − an + 8 .

3. Soit n ∈ N∗. Alors :

An+2 − (An+1 −An) = an+2 − 8− (an+1 − 8− (an − 8)) = an+2 − an+1 + an − 8 = 0

d’après la question II-2. Donc pour tout n ∈ N∗, on a bien An+2 = An+1 −An .

4. La suite (An)n∈N∗ est récurrente linéaire d’ordre deux. L’équation caractéristique associée est x2 = x− 1
soit encore x2 − x + 1 = 0. Son discriminant vaut −3 < 0 donc cette équation admet deux racines

complexes qui sont
1 + i

√
3

2
= e i

π
3 et

1− i
√
3

2
= e−i

π
3 . Il existe alors (A,B) ∈ R2 tel que pour tout

n ∈ N∗, on ait An = A cos
(
n
π

3

)
+ B sin

(
n
π

3

)
. Déterminons les valeurs de A et B. On a tout d’abord

A1 = a1 − 8 = −6 et A2 = a2 − 8 = −6 (car a1 = a2 = 2) donc :{
A1 = −6
A2 = −6 ⇐⇒

{
A +

√
3B = −12 L1

−A +
√
3B = −12 L2

⇐⇒
{

A +
√
3B = −12 L1

2
√
3B = −24 L2 ← L1 + L2

⇐⇒

{
A = 0

B = − 12√
3
= − 12

√
3

3 = −4
√
3

Finalement, pour tout n ∈ N∗, on a An = −4
√
3 sin

(
n
π

3

)
.

5. Pour tout n ∈ N∗, on sait que an = 8 +An donc :

∀n ∈ N∗, an = 8− 4
√
3 sin

(
n
π

3

)
6. Aucune des deux suites ne tend vers 0 quand n tend vers +∞ ; plus précisément, les valeurs prises par

(an)n∈N∗ et (tn)n∈N∗ oscillent respectivement autour de 8 et 4 et les suites divergent (elles ne convergent
vers aucune limite) donc :

aucune des deux espèces ne tend à disparaître selon le modèle proposé

III – Évolution de la population de serpents

1. On a s3 =

⌊
s22
s1

⌋
− 1 =

⌊
25

2

⌋
− 1 = 12− 1 = 11 .

2. (a) La suite (un)n∈N∗ est arithmético-géométrique. Soit ℓ ∈ R. On résout :

ℓ = 2ℓ+ 1 ⇐⇒ ℓ = −1

Soit n ∈ N∗. Posons vn = un− (−1) = un +1. D’une part un+1 = 2un +1 et d’autre part, ℓ = 2ℓ+1.
En soustrayant la deuxième équation à la première, il vient un+1− ℓ = 2un+1− (2ℓ+1) = 2(un− ℓ).
La suite (vn)n∈N∗ est donc géométrique de raison 2 et de premier terme v1 = u1 + 1 = 3. Pour tout
n ∈ N∗, on a alors vn = v1 × 2n−1 = 3× 2n−1 et comme un = vn − 1, il vient :

∀n ∈ N∗, un = 3× 2n−1 − 1
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(b) Soit n ∈ N∗. Alors (un+1)
2 = (3× 2n − 1)

2
= 9× 22n − 6× 2n + 1 donc

(un+1)
2

un
− un+2 =

9× 22n − 6× 2n + 1

3× 2n−1 − 1
−
(
3× 2n+1 − 1

)
=

9× 22n − 6× 2n + 1−
(
3× 2n+1 − 1

) (
3× 2n−1 − 1

)
3× 2n−1 − 1

=
9× 22n − 6× 2n + 1− 9× 22n + 3× 2n+1 + 3× 2n−1 − 1

3× 2n−1 − 1

=
9× 22n − 6× 2n + 1− 9× 22n + 6× 2n + 3× 2n−1 − 1

3× 2n−1 − 1

=
3× 2n−1

3× 2n−1 − 1

=

(
1 + 3× 2n−1

)
− 1

3× 2n−1 − 1

et donc : ∀n ∈ N∗,
(un+1)

2

un
− un+2 = 1 +

1

3× 2n−1 − 1

(c) Soit n ∈ N∗. D’après la question III-2.(b), on a :⌊
(un+1)

2

un

⌋
=

⌊
un+2 + 1 +

1

3× 2n−1 − 1

⌋

Comme n ⩾ 1, on a 3× 2n−1 − 1 ⩾ 2 et donc 0 ⩽
1

3× 2n−1 − 1
⩽

1

2
et donc :

un+2 + 1 ⩽ un+2 + 1 +
1

3× 2n−1 − 1
⩽ un+2 + 1 +

1

2
< (un+2 + 1) + 1

Or on sait que un+2 (et donc un+2+1) est un entier (d’après la question III-2.(a)) donc, par définition
de la partie entière, on a : ⌊

un+2 + 1 +
1

3× 2n−1 − 1

⌋
= un+2 + 1

Finalement,
⌊
(un+1)

2

un

⌋
= un+2 + 1 et donc : ∀n ∈ N∗, un+2 =

⌊
(un+1)

2

un

⌋
− 1

(d) On montre enfin par récurrence que pour tout n ∈ N∗, on a sn = un.

Problème 2
Partie A : Etude d’une application

1. Étude de l’injectivité de f .
(a) Soit x ∈ R∗. Alors

f

(
1

x

)
=

2
x

1 +
(
1
x

)2 =
2
x

1 + 1
x2

× x2

x2
=

2x

x2 + 1
= f(x)

Par conséquent, pour tout x ∈ R∗, on a f

(
1

x

)
= f(x) .

(b) D’après la question précédente, on a par exemple (pour x = 2) :f
(
1

2

)
= f(2) =

4

5

Donc le nombre
4

5
admet au moins deux antécédents par f dans R qui sont

1

2
et 2.

Par conséquent, l’application f n’est pas injective

2. Étude de la surjectivité de f .
(a) Soit x ∈ R. On a (x − 1)2 ⩾ 0 donc, en développant, x2 − 2x + 1 ⩾ 0, ce qui se réécrit x2 + 1 ⩾ 2x.

En développant (x+ 1)2, qui est positif ou nul, on trouve également que x2 + 1 ⩾ −2x. Donc

pour tout x ∈ R, on a 2x ⩽ 1 + x2 et − 2x ⩽ 1 + x2

(b) Soit x ∈ R. D’après les inégalités de la question précédente, on a −(1 + x2) ⩽ 2x ⩽ 1 + x2. Or

1 + x2 > 0 donc −1 ⩽
2x

1 + x2
⩽ 1. Finalement, pour tout x ∈ R, on a −1 ⩽ f(x) ⩽ 1 .
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(c) On sait que, pour tout x ∈ R, on a −1 ⩽ f(x) ⩽ 1. Donc l’équation f(x) = 2 n’admet pas de solution
dans R. Autrement dit, le nombre 2 ∈ R n’admet pas d’antécédent par f dans R. On en conclut que

l’application f n’est pas surjective

3. Rendre f bijective.
(a) On commence par étudier les variations de l’application f sur son domaine de définition. La fonction

f est dérivable sur R (comme quotient de fonctions qui le sont) et, pour tout nombre réel x, on a

f ′(x) =
2(1 + x2)− 2x× 2x

(1 + x2)2
=

2 + 2x2 − 4x2

(1 + x2)2
=

2− 2x2

(1 + x2)2
=

2(1− x)(1 + x)

(1 + x2)2

et le signe de f ′(x) est celui de (1− x)(1 + x). On en déduit le tableau de signes de f ′ et le tableau
de variations de f suivant :

x

1 − x

1 + x

f ′(x)

f

−∞ −1 1 +∞

+ + 0 −

− 0 + +

− 0 + 0 −

00

−1−1

11

00

On trouve donc que f([−1, 1]) = [−1, 1] .

(b) Soit y ∈ f([−1, 1]) = [−1, 1]. On résout l’équation y = g(x) d’inconnue x ∈ [−1, 1].
Soit x ∈ [−1, 1].

g(x) = y ⇐⇒ 2x

1 + x2
= y ⇐⇒ 2x = y(1 + x2) ⇐⇒ 2x = y + yx2 ⇐⇒ yx2 − 2x+ y = 0

On distingue deux cas.
⋆ Premier cas : y = 0. Alors

g(x) = 0 ⇐⇒ −2x = 0 ⇐⇒ x = 0

et donc 0 admet un unique antécédent dans [−1, 1] par l’application g qui est 0.
⋆ Deuxième cas : y ∈ [−1, 1] \ {0}. Alors yx2 − 2x + y = 0 est une équation du second degré

(puisque y ̸= 0) dont le discriminant vaut (−2)2 − 4× y × y = 4(1− y2). Si y = 1, alors on a une
unique racine qui est x = 1 tandis que si y = −1, alors on a une unique racine qui est x = −1.
Supposons maintenant que y ∈] − 1, 1[\{0}. Alors le discriminant est strictement positif et donc
l’équation admet donc deux solutions dans R qui sont

2 +
√

4(1− y2)

2y
et

2−
√
4(1− y2)

2y
c’est-à -dire

1 +
√

1− y2

y
et

1−
√

1− y2

y

Il reste à vérifier qu’il n’y a qu’une seule de ces deux solutions qui appartient à l’intervalle [−1, 1].
On a 1−y2 > 0 puisque y ∈]−1, 1[ donc

√
1− y2 > 0 car la fonction racine carrée est strictement

croissante sur R+. Donc 1+
√
1− y2 > 1. On en déduit donc que, si y ∈]0, 1[, alors

1 +
√

1− y2

y
>

1

y
> 1 et si y ∈]−1, 0[, alors

1 +
√
1− y2

y
<

1

y
< −1. Par conséquent,

1 +
√

1− y2

y
/∈ [−1, 1]. Par

contre, pour tout y ∈ [−1, 1] \ {0}, on a

1−
√
1− y2

y
=

(
1−

√
1− y2

)(
1 +

√
1− y2

)
y
(
1 +

√
1− y2

) =
−y

1 +
√
1− y2

∈ [−1, 1]

car on a montré précédemment que
1 +

√
1− y2

y
/∈ [−1, 1], donc −1 +

√
1 + y2

y
/∈ [−1, 1] et

donc son inverse appartient à l’intervalle [−1, 1]. Finalement, le nombre y admet un et un seul

antécédent par g dans l’intervalle [−1, 1] qui est
1−

√
1− y2

y
.
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On en conclut donc que l’application g est bijective et,

∀y ∈ [−1, 1], g−1(y) =


0 si y = 0

1−
√
1− y2

y
si y ∈ [−1, 1] \ {0}

car l’antécédent obtenu précédemment reste valable pour y = −1 et y = 1.
Partie B : Suite et python

1. def f(x):
return 2*x/(x**2+1)

def suite(n,u0):
u=u0
L=[u]
for i in range(n):

u=(-1)**i*f(u)
L.append(u)

return(L)

2. def min(L):
m=L[0]
for i in range(len(L)):

if m>L[i]:
m=L[i]

return m

3. def minimumsuite(n,u0):
return min(suite(n,u0))

Partie C : Une équation différentielle
1. Soit x ∈ R.

On pose ∀t ∈ R,
u′(t) = et et u′(t) = et

v(t) = t et v′(t) = 1.

Les fonctions u et v sont de classe C1 sur R donc par intégration par parties,∫ x

0

tetdt =
[
tet

]x
0
−
∫ x

0

etdt = xex −
[
et
]x
0
= xex − (ex − 1) = xex − ex + 1

2. (E) est une équation différentielle linéaire d’ordre 1.

Soit (H) : y′(x) +
2x

x2 + 1
y(x) = 0 l’équation homogène associée.

x 7→ 2x

x2 + 1
est une fonction continue sur R donc elle admet une primitive. Prenons x 7→ ln(x2 + 1).

L’ensemble des solutions de (H) est donc

SH =
{
x 7→ Ce− ln(x2+1)

∣∣∣ C ∈ R
}
=

{
x 7→ C

x2 + 1

∣∣∣∣ C ∈ R
}

On cherche une solution particulière yp de (E) par variation de la constante. Soit yp : x 7→ C(x)

x2 + 1
où C

est une fonction dérivable sur R.
yp est dérivable sur R et pour tout x ∈ R, y′p(x) = C ′(x)

1

x2 + 1
+ C(x)

−2x
(x2 + 1)2

.

Yp est solution de (E) donc pour tout x ∈ R,

C ′(x)
1

x2 + 1
+ C(x)

−2x
(x2 + 1)2

+
2x

x2 + 1

C(x)

x2 + 1
=

xex

x2 + 1

⇐⇒ C ′(x) = xex

D’après la question 1 de la partie C, une primitive de x 7→ ex est x 7→ xex − ex + 1. Ainsi, on a

yp : x 7→ xex − ex + 1

x2 + 1
qui est solution de (E).

D’après le théorème fondamental, l’ensemble des solutions de (E) est

SE =

{
C

x2 + 1
+

xex − ex + 1

x2 + 1

∣∣∣∣ C ∈ R
}

3. Soit C ∈ R et y : x 7→ C

x2 + 1
+

xex − ex + 1

x2 + 1
.

On a y(1) = 1⇐⇒ C

2
+

1

2
= 1⇐⇒ C = 1.

Donc le problème de Cauchy admet pour unique solution

x 7→ 1

x2 + 1
+

xex − ex + 1

x2 + 1
soit x 7→ xex − ex + 2

x2 + 1
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