
Bio1B Programme de Mathématiques

Semaine n°17 du 02 au 06 février

Informatique(Python) : cf exemples en annexe

➟ boucle while, boucle for,.

➟ listes en Python : création d’une liste, extraction d’un élément, parcours d’une liste, concaténation,
len, append...etc

➟ Graphique : module pyplot de mathplotlib, fonction plot et show. (Attention la fonction linespace (de
numpy) n’est pas encoer connue).

Systèmes linéaires

➟ Définitions : système linéaire à n équations et p inconnues, solutions d’un système, systèmes équivalents,
système compatible.

➟ Système échelonné : définition, méthode de résolution, rang d’un système échelonné, rang maximal,
ensemble de solutions en fonction du rang, nombre de solutions d’un système échelonné.

➟ Méthode du pivot de Gauss pour échelonner un système.

➟ Rang d’un système linéaire quelconque, nombre de solutions d’un système linéaire.

➟ Système de Cramer : définition, un système de Cramer admet une unique solution.

➟ Exemples de résolution de système avec paramètre.

dénombrement

➟ Cardinal d’un ensemble : définition, cardinal d’un sous-ensemble, lien avec les ensembles de départ et
d’arrivée des applications injectives, surjectives, bijectives (cas particulier d’une application ayant un
ensemble de départ et d’arrivée de même cardinal).

➟ Cardinal d’une union : disjointe de deux ensembles, disjointe de n ensembles, union quelconque de
deux ensembles.

➟ Cardinal d’un produit cartésien.

➟ p-liste sans répétition : définition, nombre de p-listes sans répétition d’un ensemble à n éléments.

➟ permutations : définition, nombre de permutations d’un ensemble.

➟ combinaisons : définition, nombre de p-combinaisons d’un ensemble à n éléments.

➟ cardinal de l’ensemble des parties d’un ensemble E fini (démonstration exigible ).

Espaces vectoriels

➟ Espace vectoriel Kn : vecteurs, saclaires, addition de deux vecteurs, multiplication d’un vecteur par
un scalaire.

➟ Propriétés : Soient λ ∈ K et u⃗ ∈ Kn. Alors
• 0 · u⃗ = ⃗0Kn

• λ · ⃗0Kn = ⃗0Kn

• λ · u⃗ = ⃗0Kn ⇐⇒ (λ = 0 ou u⃗ = ⃗0Kn)

➟ Combinaison linéaire de vecteurs.

➟ Sous espace vectoriel de Kn : partie de Kn contenant le vecteur nul et stable par combinaison linéaire.

➟ Intersection de deux sous-espaces vectoriels (démonstration exigible )

➟ Notation Vect(u⃗1, ...u⃗p) où u⃗1, u⃗p sont des vecteurs de Kn : ensemble des combinaisons linéaires des
vecteurs u⃗1, ...u⃗p. C’est un sous espace vectoriel de Kn appelé le sous-espace vectoriel de Kn engendré
par les vecteurs u⃗1, ...u⃗p.

➟ Différentes écritures d’un sous-espace vectoriel de Kn :
• Ecriture cartésienne : A = {(x, y, z) ∈ R3, x+ y + z = 0 et x− y = 0}.
• Ecriture paramétrée : A = {(x, x,−2x), x ∈ R}.
• Ecriture sous forme d’une sous espace vectoriel engendré par une famille de vecteurs : A =vect
((1, 1,−2)).

1



Bio1B Programme de Mathématiques

Remarques aux colleurs

— Merci aussi de poser une petite question d’informatique (cf Annexe).

Exemples de programmes informatiques

Exercice 1

Ecrire en Python une fonction existence qui prend en entrée une liste L et un nombre element et renvoie
True si element se trouve dans la liste L, False sinon.

def existence(L,element):

n=len(L) # taille de la liste

for i in range(n):

if L[i]==element:

return True

return False # si on n’ a pas trouvé element après avoir parcouru toute la liste

Exercice 2

Ecrire en Python une fonction MaximumListe qui prend en entrée une liste L et renvoie la plus grande valeur
de cette liste
def MaximumListe(L):

n=len(L) #taille de la liste

maxi=L[0] #on considère temporairement que le max est le premier élément

for i in range(n):

if L[i]>maxi:

maxi=L[i] #on a trouvé une plus grande valeur

return maxi

Exercice 3

Ecrire en Python une fonction Somme qui prend en entrée une liste L et renvoie la somme de ses éléments :

def Somme(L):

n=len(L) #taille de la liste

S=0 #initialisation de la somme

for i in range(n):

S=S+L[i]

return S

Exercice 4

Ecrire une fonction experience qui prend en paramètre un entier n et simule n lancers successifs d’une pièce
de monnaie équilibrée en renvoyant une liste aléatoire composée de n valeurs égales à 0 ou 1. On considérera
que 0 correspond à Face et 1 à Pile.
from random import * # bibliothèque nécessaire pour créer des nombres aléatoires

def experience(n):

L=[] #liste vide initialement

for i in range(n):

L.append(randint(0,1)) # 0 ou 1 choisi de manière aléatoire

return L

2


