TP 3

Boucle FOR – suites récurrentes

I. Suites récurrentes d'ordre 1

a. Application du cours

Exercice 1 Écrire une fonction terme(n) qui renvoie la valeur de u_n , où :

1.
$$u_1 = 6$$
 et $\forall n \ge 2$, $u_n = (u_{n-1} + n)^2$

2.
$$u_0 = 3$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + 3n}{2n + 1}$

b. Conjectures

Exercice 2 Soit la suite u définie par $u_0 = 4$, et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{1 + u_n^2}$.

- 1. Écrire une fonction suite(n) qui calcule et renvoie la valeur de u_n .
- 2. Utiliser cette fonction suite afin d'émettre une conjecture sur la limite de la suite (u_n) .
- 3. Écrire une fonction monotonie (n) qui teste la monotonie de la suite u, c'est-à-dire :
 - renvoie False si il existe $k \in [0, n]$ tel que $u_{k+1} u_k$ change de signe,
 - renvoie True sinon.
- 4. Comment utiliser cette fonction monotonie pour émettre une conjecture sur la monotonie de la suite (u_n) ?
- 5. Si la suite est supposée monotone, comment utiliser la fonction suite pour préciser la monotonie ?

Exercice 3 On considère la suite u définie par $u_0 = -1$, et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n - \frac{1 + u_n + 2e^{u_n}}{1 + 2e^{u_n}}$.

Écrire une fonction suite(n) qui calcule et renvoie la valeur de u_n , pour $n \ge 1$.

A l'aide de cette fonction, établir une démarche informatique permettant d'émettre des conjectures sur la limite de la suite (u_n) et sa monotonie.

on pourra s'inspirer de l'exercice précédent.

b. Sommes

Exercice 4 On considère la suite u définie par : $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = 3\sqrt{u_n} + 1$

- 1. Écrire une fonction suite(n) qui calcule et renvoie la valeur de u_n
- 2. On note $S_n = \sum_{k=0}^n u_k$
 - (a) Écrire une fonction somme_1(n) qui calcule et renvoie la valeur de S_n , en utilisant la fonction suite
 - (b) Écrire une fonction somme_2(n) qui calcule et renvoie la valeur de S_n , sans utiliser la fonction suite
- 3. En Python, on peut chronométrer le temps que met un calcul avec la fonction time de la bibliothèque time de la façon suivante

```
import time
T0=time.time() stocke dans T0 l'heure de début de calcul
# écrire le calcul à effectuer
T1=time.time() stocke dans T0 l'heure de fin de calcul
print(T1-T0) affiche la durée du calcul
```

Proposer un script qui permet de constater que somme_2 est plus rapide que somme_1 pour n = 100 ou n = 1000.

II. Suites récurrentes d'ordre 2

a. Application du cours

Exercice 5 Écrire une fonction terme(n) qui renvoie la valeur de u_n , où :

1.
$$u_0 = 1$$
, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 2u_{n+1} - 3u_n$

2.
$$u_0 = 2$$
, $u_1 = 3$ et $\forall n \ge 2$, $u_{n+2} = \sqrt{u_n + u_{n+1}^2}$

b. Conjectures

Exercice 6 On considère la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ définie par:

$$F_0 = 0$$
 $F_1 = 1$ et $\forall n \ge 2$, $F_n = F_{n-1} + F_{n-2}$.

Écrire une fonction qui calcule et affiche F_n , pour tout entier n. En déduire une conjecture sur la limite éventuelle de cette suite.