Suites usuelles

I. Application directe du cours

Exercice 1 Pour chacune des suites ci-dessous, exprimer le terme général en fonction de n.

- 1. (w_n) est une suite arithmétique de premier terme $w_0 = 2$ et de raison r = -3.
- 2. (u_n) est une suite arithmétique de premier terme $u_2 = \frac{3}{4}$ et de raison $r = \frac{1}{2}$.
- 3. (p_n) est une suite géométrique de premier terme $p_0=3$ et de raison q=4.
- 4. (g_n) est une suite géométrique de premier terme $g_1 = 5$ et de raison q = -2.

Exercice 2 Exprimer le terme général des suites suivantes en fonction de n:

$$\left\{ \begin{array}{l} a_0=0 \\ \forall n\in\mathbb{N}, a_{n+1}=-a_n+1 \end{array} \right. \quad \left\{ \begin{array}{l} u_0=1 \\ \forall n\in\mathbb{N}, u_{n+1}=\frac{1}{3}\,u_n+1 \end{array} \right.$$

Exercice 3 Exprimer le terme général des suites suivantes en fonction de n:

$$\left\{ \begin{array}{l} v_0 = 1, v_1 = 2 \\ \forall n \in \mathbb{N}^*, v_{n+2} = 2v_{n+1} + 3v_n \end{array} \right. \quad \left\{ \begin{array}{l} u_0 = 0, u_1 = 1 \\ \forall n \in \mathbb{N}, u_{n+2} = 6 \, u_{n+1} - 9 \, u_n \end{array} \right.$$

Exercice 4:

- 1. Soit (u_n) la suite définie pour tout entier naturel n par $u_n=2n^2-n+1$. Montrer que (u_n) n'est pas une suite arithmétique.
- 2. Soit (u_n) la suite définie pour tout entier naturel n par $u_n = 3n^2 7n + 6$. Montrer que (u_n) n'est pas une suite géométrique.

II. Suites auxiliaires : changement de suite

Exercice 5 On considère la suite (u_n) définie par:

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2 u_n + 1}$$

On pose : $\forall n \in \mathbb{N}, v_n = \frac{1}{u_n}$.

- 1. Montrer que la suite (v_n) est bien définie.
- 2. Montrer que (v_n) est une suite arithmétique. En déduire v_n puis u_n en fonction de n pour tout entier n.

Exercice 6 On considère la la suite (u_n) définie par:

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 3u_n - 2n + 3$

- 1. Pour tout entier n, on pose : $v_n = u_n n + 1$. Montrer que (v_n) est une suite géométrique.
- 2. En déduire u_n en fonction de n.

Exercice 7 On considère la suite u définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{3u_n + 1}{2u_n + 4}$

- 1. Montrer que $\forall n \in \mathbb{N}, \quad u_n \in \mathbb{R}_+$.

 On introduit alors la suite auxiliaire t définie par $\forall n \in \mathbb{N}, \quad t_n = \frac{2u_n 1}{u_n + 1}$.
- 2. Montrer que la suite t est géométrique.
- 3. Expliciter alors t_n en fonction de n puis u_n en fonction de n.

Exercice 8 On considère la suite (u_n) définie par :

$$u_0 = 4 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{u_n - 2} + 2$$

- 1. Montrer que la suite (u_n) est bien définie et que pour tout entier naturel $n: u_n > 2$.
- 2. On considère la suite (v_n) définie par $v_n = \ln(u_n 2)$ pour tout $n \in \mathbb{N}$.
 - (a) Montrer que la suite (v_n) est bien définie.
 - (b) Déterminer la nature de (v_n) .
- 3. En déduire une expression de u_n en fonction de n.

Exercice 9 On considère la suite (u_n) définie par :

$$u_0 = 0 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = 2u_n + 3^n$$

- 1. Montrer que la suite (v_n) de terme général $v_n = \frac{u_n}{3^n}$ est une suite arithmético-géométrique.
- 2. En déduire une expression de u_n en fonction de n.

Exercice 10 Soit (u_n) la suite définie par: $u_0 = 3$ et $\forall n \in \mathbb{N}, u_{n+1} = 6 u_n^5$.

- 1. Montrer que $\forall n \in \mathbb{N}, u_n > 0$.
- 2. Déterminer u_n en fonction de n pour tout entier n.

Exercice 11 Soit (u_n) la suite définie par récurrence: $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 2\sqrt{u_n}$.

- 1. Montrer que la suite est bien définie pour tout $n \in \mathbb{N}$.
- 2. Trouver la valeur de u_n en fonction de n pour tout entier n.

Exercice 12 Soit (u_n) la suite définie par $u_0 = 2$, $u_1 = 4$ et la relation de récurrence:

$$\forall n \in \mathbb{N}, \ u_{n+2} = \frac{u_{n+1}^4}{u_n^3}.$$

- 1. Montrer que (u_n) est à termes strictement positifs.
- 2. Pour tout $n \in \mathbb{N}$, déterminer l'expression de u_n en fonction de n. on pourra poser la suite de terme général: $v_n = \ln(u_n)$

IV. Reconnaître des suites usuelles

Exercice 13 Soit la suite (u_n) définie par:

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = 1 + \sum_{k=0}^{n} u_k$$

Pour tout entier n, déterminer u_n en fonction de n.

Exercice 14 On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{3u_n + 2v_n}{5} \end{cases} \text{ et } \begin{cases} v_0 = 1 \\ \forall n \in \mathbb{N}, v_{n+1} = \frac{2u_n + 3v_n}{5} \end{cases}$$

- 1. On considère la suite $(d_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\,d_n=v_n-u_n$. Montrer que $(d_n)_{n\in\mathbb{N}}$ est une suite géométrique dont on précisera la raison et le premier terme. En déduire une expression de d_n en fonction de n pour tout entier naturel n.
- 2. On considère la suite $(s_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}, s_n=v_n+u_n$. Montrer que $(s_n)_{n\in\mathbb{N}}$ est constante. En déduire une expression de s_n en fonction de n pour tout entier naturel n.
- 3. En déduire une expression de u_n et v_n en fonction de n pour tout entier naturel n.

Exercice 15 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites définies par $u_0=1, v_0=2$ et, pour $n\in\mathbb{N}$,

$$u_{n+1} = 3u_n + 2v_n$$
 et $v_{n+1} = 2u_n + 3v_n$.

1. Montrer que la suite $(u_n - v_n)_{n \in \mathbb{N}}$ est constante.

- 2. En déduire que $(u_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique.
- 3. Calculer u_n et v_n en fonction de n.

Exercice 16 On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ les suites définies par $u_0=2, v_0=-3$ et, pour $n\in\mathbb{N}$,

$$u_{n+1} = -u_n - v_n$$
 et $v_{n+1} = \frac{4}{3} u_n + \frac{5}{3} v_n$.

- 1. Démontrer que $(u_n)_{n\in\mathbb{N}}$ vérifie une relation de récurrence linéaire d'ordre 2.
- 2. Calculer u_n puis v_n en fonction de n, puis les limites des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.