Trigonométrie – Manipulation du cercle

I. Formules trigonométriques ET LE CERCLE!!

Exercice 1 Donner les valeurs de

1.
$$\cos(\frac{5\pi}{6})$$

2.
$$\sin(\frac{17\pi}{4})$$

3.
$$\tan(\frac{2\pi}{3})$$

4.
$$\cos(7\pi)$$

5.
$$\sin(\frac{5\pi}{4})$$

Exercice 2 Calculer les expressions suivantes :

$$1. \cos^2\left(-\frac{\pi}{13}\right) + \sin^2\left(-\frac{\pi}{13}\right)$$

4.
$$\frac{\sin\left(\frac{\pi}{4}\right)}{\cos^2\left(\frac{\pi}{3}\right)}$$

2.
$$\cos^2\left(-\frac{\pi}{6}\right) - \sin^2\left(-\frac{\pi}{6}\right)$$

5.
$$\cos^2\left(\frac{4\pi}{3}\right) - \sin^2\left(\frac{4\pi}{3}\right)$$

3.
$$\sin\left(-\frac{5\pi}{6}\right) \times \cos\left(\frac{2\pi}{3}\right) - \cos(-\pi)$$
.

6.
$$\cos\left(\frac{\pi}{4}\right) + \cos\left(\frac{3\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right) + \cos\left(\frac{7\pi}{4}\right)$$

Exercice 3 Simplifier l'expression : $\forall x \in \mathbb{R}, \sin(-x) + \cos(\pi + x) + \sin(\frac{\pi}{2} - x)$

Exercice 4 Dans chacun des cas suivants, donner un réel x vérifiant les conditions demandées:

1.
$$\cos x = -\frac{\sqrt{2}}{2}$$
, avec :

(a)
$$x \in [0, \pi[$$
.

(b)
$$x \in \left] -\pi, -\frac{\pi}{2} \right]$$

2.
$$\sin x = \frac{1}{2}$$
, avec :

(a)
$$x \in \left[\frac{\pi}{2}, \pi\right]$$

(b)
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

Exercice 5 Donner le signe de :

1.
$$\cos(\frac{2\pi}{5})$$

2.
$$\sin(\frac{8\pi}{5})$$

3.
$$\tan(\frac{13\pi}{5})$$

II. Équations/inéquations trigonométriques.

Exercice 6 Résoudre dans $[0, 2\pi]$ puis dans $[-\pi, \pi]$ les équations suivantes :

1.
$$\cos x = \frac{1}{2}$$

2.
$$\cos x = \frac{1}{4}$$

3.
$$\sin x = -\frac{\sqrt{3}}{2}$$

4.
$$\cos^2 x = \frac{1}{2}$$

3.
$$\sin x = -\frac{\sqrt{3}}{2}$$
 4. $\cos^2 x = \frac{1}{2}$ 5. $|\tan x| = \frac{1}{\sqrt{3}}$

Exercice 7 Résoudre dans \mathbb{R} les équations suivantes :

$$1. \cos(3x) = \cos(x)$$

$$2. \cos(3x) = \sin x$$

3.
$$2 \sin\left(2x - \frac{\pi}{3}\right) = \sqrt{2}$$

$$4. \tan(3x) = \tan x$$

Exercice 8 Résoudre les équations trigonométriques suivantes dans \mathbb{R} .

1.
$$\cos^2(x) - \frac{3}{2}\cos(x) + \frac{1}{2} = 0$$

3.
$$\cos(2x) = -2\cos(x) - 1$$

5.
$$2\tan^2 x = \frac{1}{\cos^2 x}$$

$$2. \sin^2 x + 3\cos x - 1 = 0$$

4.
$$\tan^2(x) + 5\tan(x) = 0$$

6.
$$\sin^2(2x + \frac{\pi}{6}) = \cos^2(x + \frac{\pi}{3})$$

Exercice 9 Résoudre sur $[0, 2\pi]$ les inéquations trigonométriques suivantes:

$$1. \cos x > \frac{\sqrt{3}}{2}$$

3.
$$1 - 3\sin x \le 0$$

3.
$$1 - 3\sin x \le 0$$
 5. $\sin\left(2x - \frac{\pi}{6}\right) \le \frac{1}{2}$ 7. $2|\cos x| < 1$
4. $1 - 5\cos\left(\frac{x}{2}\right) > 0$ 6. $2\sin^2 x - 3\sin x + 1 < 0$ 8. $\sin^2 x \le \frac{3}{4}$

7.
$$2|\cos x| < 1$$

$$2. \sin(2x) < 0$$

$$4. \ 1 - 5\cos\left(\frac{x}{2}\right) > 0$$

$$3. \ 2\sin^2 x - 3\sin x + 1 < 0$$

8.
$$\sin^2 x \leqslant \frac{3}{4}$$

Exercice 10 Soient deux réels $x, y \in \left[0, \frac{\pi}{2}\right]$ tels que $\tan x = \frac{1}{7}$ et $\tan y = 2$.

- 1. Montrer que $\tan(x+2y)=-1$. on pourra utiliser la formule $\tan(a+b)=\frac{\tan a + \tan b}{1-\tan a\, \tan b}$
- 2. En déduire la valeur de x + 2y.

Exercice 11 Le but de cet exercice est de calculer $\tan\left(\frac{\pi}{12}\right)$.

- 1. Résoudre dans \mathbb{R} l'équation : $t^2 + 2\sqrt{3}t 1 = 0$.
- 2. En utilisant la formule $\tan(2x) = \frac{2 \tan x}{1 \tan^2 x}$ pour un réel x judicieusement choisi, montrer que $\tan\left(\frac{\pi}{12}\right)$ est solution de l'équation de la question précédente.
- 3. En déduire la valeur de $\tan\left(\frac{\pi}{12}\right)$.

III. Trigonométrie réciproque.

Exercice 12 Déterminer les valeurs de

1.
$$\arcsin(\frac{1}{2})$$

3.
$$\arctan(\frac{\sqrt{3}}{3})$$

5.
$$\arcsin(-\frac{1}{2})$$

$$2. \ \frac{\arcsin(\frac{\sqrt{3}}{2})}{\arccos(\frac{\sqrt{3}}{2})}$$

6.
$$\arccos(-\frac{\sqrt{2}}{2})$$

Exercice 13 Calculer les valeurs suivantes :

1.
$$\sin(\arcsin(\pi))$$

2.
$$\sin\left(\arcsin\left(\frac{2\pi}{3}\right)\right)$$

3.
$$\tan(\arctan(3\pi))$$

4.
$$\tan\left(\arctan\left(\frac{2\pi}{3}\right)\right)$$

Exercice 14 Calculer les valeurs suivantes :

1.
$$\sin(\arcsin(2))$$

2.
$$\cos\left(\arccos\left(-\frac{\pi}{17}\right)\right)$$

3.
$$\tan(\arctan(3))$$

4.
$$\tan\left(\arctan\left(-\frac{8\pi}{7}\right)\right)$$

Exercice 15 Le but de cet exercice est de simplifier les expressions: $\sin(\arccos x) \ \forall x \in [-1,1] \quad \tan(\arcsin x) \ \forall x \in]-1,1[\quad \text{et } \cos(\arctan x) \ \forall x \in \mathbb{R}.$

- 1. (a) Montrer que : $\forall t \in [0, \pi]$, $\sin t = \sqrt{1 \cos^2 t}$.
 - (b) En déduire que : $\forall x \in [-1,1], \sin(\arccos x) = \sqrt{1-x^2}$
- 2. (a) En utilisant le même procédé que la question 1., montrer que : $\forall x \in [-1,1], \cos(\arcsin x) = \sqrt{1-x^2}$
 - (b) $\tan(\arcsin x)$ est-il bien défini pour $x \in \{-1,1\}$?
 - (c) En déduire que : $\forall x \in]-1,1[,\tan(\arcsin x)=\frac{x}{\sqrt{1-x^2}}$
- 3. (a) Montrer que : $\forall t \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \cos t = \frac{1}{\sqrt{1+\tan^2 t}}]$. indication: on rappelle la formule $1+\tan^2 = \frac{1}{\cos^2 t}$
 - (b) En déduire que : $\forall x \in \mathbb{R}, \cos(\arctan x) = \frac{1}{\sqrt{1+x^2}}$

Exercice 16 Simplifier les expressions suivantes, en prenant le soin au préalable de préciser dans quel ensemble appartient x (on pourra utiliser les résultats de l'exercice précédent):

1.
$$\cos(2 \arccos x)$$
 et $\cos(2 \arctan x)$

2.
$$\sin^2(\frac{\arccos x}{2})$$
 et $\sin(2\arctan x)$.