
Nombres complexes

BCPST 1C – Mme MOREL

Pour déterminer toutes les solutions d’une équation polynômiale, il a fallu introduire de "nouveaux" nombres.
En effet, par exemple, l’équation x2 = a n’a pas de solutions réelles si a < 0.
Ainsi, on nomme i un nombre tel que i2 = −1, puis on construit rigoureusement l’ensemble des complexes C (contenant R).
L’équation x2 = a pour a < 0 aura alors des solutions complexes.

1 Forme algébrique

1.1 Présentation
Définition 1 L’ensemble des nombres complexes est l’ensemble C = {a+ ib/a, b ∈ R} où i2 = −1, muni d’une addition
(notée +) et d’une multiplication (notée ×) qui vérifient les règles usuelles de l’addition et de la multiplication dans R, soit:
• (a+ ib) + (c+ id) = (a+ c) + i(b+ d).
• (a+ ib)× (c+ id) = (ac− bd) + i(ad+ bc).

Définition 2 :
(1) Soit z ∈ C. L’écriture z = a+ ib, avec a, b ∈ R est la forme algébrique de z.
(2) Si z = a+ ib ∈ C,
a est appelé partie réelle de z, notée a = Re(z)

b est appelé partie imaginaire de z, notée b = Im(z)

Remarque 1 La forme algébrique est unique, i.e. deux complexes sont égaux ssi ils ont même partie réelle et même partie
imaginaire. En d’autres termes: ∀a, b, c, d ∈ R,

a+ ib = c+ id ⇐⇒
{
a = c
b = d

Remarque 2 R ⊂ C et z ∈ R ⇐⇒ Im(z) = 0.
Les nombres complexes de la forme a+ i0 sont donc naturellement identifiés à R.

Définition 3 Les nombres complexes z tels que Re(z) = 0 (de la forme ib, b ∈ R) sont appelés les imaginaires purs.
Leur ensemble est noté iR

Théorème 1 Muni des opérations + et ×, C satisfait les propriétés suivantes :

1. Associativité de l’addition :
∀z, z′, z′′ ∈ C, z + (z′ + z′′) = (z + z′) + z′′.

2. 0 = 0 + 0i est élément neutre pour l’addition :

∀z ∈ C, z + 0 = 0 + z = z.

3. Existence d’un opposé pour l’addition :

∀z ∈ C,∃w ∈ C, z + w = w + z = 0.

4. Commutativité de l’addition :
∀z, w ∈ C, z + w = w + z.

5. Associativité du produit :
∀z, z′, z′′ ∈ C, (zz′)z′′ = z(z′z′′).

6. 1 = 1 + 0i est élément neutre pour le produit :

∀z ∈ C, 1× z = z × 1 = z.
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7. Commutativité du produit :
∀z, w ∈ C, zw = wz.

8. Distributivité de × sur + :
∀z, z′, z′′ ∈ C , z(z′ + z′′) = zz′ + zz′′.

9. Existence d’un inverse pour ×, pour tout élément non nul :

∀z ∈ C∗,∃w ∈ C , zw = wz = 1.

Preuve:
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Proposition 1 ∀z1, z2 ∈ C, ∀λ ∈ R,
(1) Re(z1 + z2) = Re(z1) +Re(z2) et Im(z1 + z2) = Im(z1) + Im(z2).
(2) Re(λ z1) = λRe(z1) et Im(λ z1) = λ Im(z1).

Preuve:

Remarque 3 On en déduit: pour tous complexes z1, . . . , zk,

Re

(
n∑
k=1

zk

)
=

n∑
k=1

Re(zk) et Im

(
n∑
k=1

zk

)
=

n∑
k=1

Im(zk) .

Définition 4 (représentation géométrique):

Le plan est rapporté à un repère orthonormal (O,
→
i ,
→
j ).

(1) Soit M un point du plan de coordonnées (a, b), a, b ∈ R.
On dit que le complexe z = a+ ib est l’affixe du point M , et on note M(z).
L’axe des abscisses (Ox) est l’axe des réels et l’axe des ordonnées (Oy) est l’axe des imaginaires purs.

(2) Le vecteur
−→
OM= a

→
i +b

→
j donc z est aussi l’affixe du vecteur

−→
OM

Remarque 4 : ATTENTION! Pas de relation d’ordre (6) dans C!!!

Remarque 5 Interprétation géométrique de la somme de deux complexes.
Soient M et M ′ deux points du plan complexe d’affixes z et z′ respectivement. Le point N d’affixe z + z′ donne la relation

vectorielle:
−→
ON=

−→
OM +

−→
OM ′.

Donc le quadrilatère OMNM ′ est un parallélogramme et:

la somme de deux complexes z et z′ est représentée par la diagonale principale du parallélogramme OMNM ′.

De même, la différence z′ − z est l’affixe du vecteur
−→
MM ′:

la différence de deux complexes z et z′ est représentée par la diagonale secondaire du parallélogramme OMNM ′.
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1.2 Complexe conjugué
Définition 5 Pour tout complexe z = a+ ib (a, b ∈ R), on définit son conjugué, notée z, par:

z = a− ib .

Donc Re(z) = Re(z) et Im(z) = −Im(z).

Remarque 6 : Représentation géométrique.

Soit M(z) le point du plan d’affixe z, M(z) est le symétrique de M(z) par rapport à l’axe des abscisses (Ox).

Exemple 1 :
(1) i = . . .

(2) On note le complexe j = −1

2
+ i

√
3

2
alors j = . . .

Remarquons que j2 = donc: j2 = j

Proposition 2 (règles de calcul): Soient z1, z2 ∈ C.
(1) z1 + z2 = z1 + z2.
(2) z1 z2 = z1 z2 donc ∀n ∈ N, ∀z ∈ C, zn = zn (récurrence).

(3) Si z2 6= 0,
(
z1
z2

)
=
z1
z2

donc ∀n ∈ N, ∀z ∈ C∗,
(

1

zn

)
=

1

zn
(récurrence).

Preuve:

Remarque 7 D’après (2) et (3): ∀n ∈ Z, ∀z ∈ C, zn = zn (avec z 6= 0 si n < 0)

Proposition 3 Soit z ∈ C.
(1) z = z.

(2) Re(z) =
z + z

2
donc z ∈ iR ⇐⇒ z = −z.

(3) Im(z) =
z − z

2i
donc z ∈ R ⇐⇒ z = z.

POINT METHODE 1 : Comment montrer qu’un complexe est réel ou imaginaire pur?

1. En passant par le conjugué: calculer z et aboutir à z ou −z.
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2. En passant par un argument (voir partie 2.1)

Preuve:

1.3 Module
Remarque 8 : représentation géométrique.

Soit M(z) le point du plan d’affixe z = a+ ib. z est aussi l’affixe du vecteur
→
OM .

On rappelle que la norme du vecteur
→
OM (ou la distance entre O et M) est donnée par: ‖

→
OM‖=

√
a2 + b2.

Cela définit le module de z...

Définition 6 Soit z = a+ ib ∈ C. On définit son module, noté |z| par:

|z| =
√
a2 + b2 .

Remarque 9 :
(1) Cohérence de la notation: si z = a+ i0 alors |z|︸︷︷︸

module

=
√
a2 = |a|︸︷︷︸

valeur absolue

.

Donc le module d’un réel coïncide avec sa valeur absolue , donc la notation du module est cohérente.

(2) On a aussi: |z| =
√
z z

En effet: z z = (a+ ib)(a− ib) = a2 + b2.

Exemple 2 |i| = . . . et |j| = donc |j| = 1

Remarque 10 :
(1) ATTENTION! ∀z ∈ C, |z| > 0!!

Le module étant une distance, c’est un réel positif. On peut donc comparer des modules (utiliser des encadrements) alors
qu’on ne peut le faire pour des complexes (cf remarque 3).

(2) On a déjà vu que |z| est la distance entre O et M(z). Généralisation:

Soient deux points du plan A et B respectivement d’affixes zA = a + ib et zB = c + id. On rappelle que le vecteur
−→
AB a

pour norme (distance entre A et B) ‖
−→
AB‖=

√
(c− a)2 + (d− b)2.

Or c− a = Re(zB − zA) et d− b = Im(zB − zA) donc ‖
−→
AB‖= |zB − zA|.
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Conclusion: le module |zB − zA| est la distance entre deux points A et B

Exemple 3 :
(1) On note U = {z ∈ C/|z| = 1} l’ensemble des complexes de module 1.

C’est le cercle unité (de centre O et de rayon 1)!
(2) Soient a ∈ C et r ∈ [0,+∞[.

Alors D = {z ∈ C/|z − a| 6 r} est le disque de centre A d’affixe a et de rayon r:

Proposition 4 :
(1) ∀z ∈ C, |z| = 0 ⇐⇒ z = 0 et |z| = |z|.
(2) ∀z1, z2 ∈ C, |z1 z2| = |z1| |z2| donc ∀n ∈ N, ∀z ∈ C, |zn| = |z|n (récurrence).

(3) ∀z1, z2 ∈ C,
∣∣∣∣z1z2
∣∣∣∣ =
|z1|
|z2|

donc ∀n ∈ N, ∀z ∈ C∗,
∣∣∣∣ 1

zn

∣∣∣∣ =

∣∣∣∣1z
∣∣∣∣n

Preuve:

Remarque 11 D’après (2) et (3): ∀n ∈ Z, ∀z ∈ C, |zn| = |z|n (avec z 6= 0 si n < 0)

Proposition 5 (inégalités triangulaires): Pour tous complexes z1, z2:
(1) |z1 + z2| 6 |z1|+ |z2|.
(2) |z1 − z2| > ||z1| − |z2||.
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Preuve:

2 Forme trigonométrique

2.1 Argument d’un complexe non nul
Définition 7 (représentation géométrique): le plan est rapporté à un repère orthonormal direct.

Soit M(z) un point du plan (autre que l’origine) d’affixe z.

Une mesure de l’angle orienté (
→
i ,
−→
OM) est noté θ = arg(z) et appelé argument de z.

Remarque 12 :
(1) ATTENTION! Le complexe nul n’a pas d’argument puisque l’angle (

→
i ,
−→
O ) n’est pas défini!

(2) Un point M du plan d’affixe z est déterminé par son module et un argument:
on parle de coordonnées polaires.

Proposition 6 Tout complexe non nul z s’écrit de manière unique:

z = r(cos θ + i sin θ) ,

où:
• r = |z| > 0 est le module de z,
• θ = arg(z) ∈ R est défini à un multiple de 2π près.

L’écriture z = r(cos θ + i sin θ) est la forme trigonométrique du complexe z.
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Preuve:

Remarque 13 : Récapitulation des points importants de la preuve.
(1) Unicité de l’écriture: en d’autres termes, ∀r1, r2 > 0, ∀θ1 , θ2 ∈ R,

r1(cos θ1 + i sin θ1) = r2(cos θ2 + i sin θ2) ⇐⇒
{
r1 = r2
∃ k ∈ Z , θ1 = θ2 + 2kπ

(2) Lien entre la forme algébrique (z = a + ib) et la forme trigonométrique (z = |z|(cos(arg z) + i sin(arg z)) pour tout
complexe z non nul:

|z| =
√
a2 + b2, cos(arg z) =

a√
a2 + b2

et sin(arg z) =
b√

a2 + b2

Exemple 4 :
(1) i = . . .

(2) On rappelle: j = −1

2
+ i

√
3

2
. |j| = . . . (déjà vu)

Donc: j = cos(
2π

3
) + i sin(

2π

3
)

(3) z =
√

3 + i 6= 0. |z| = . . .

Remarque 14 :
(1) z ∈ R ⇐⇒ z = 0 ou ∃ k ∈ Z tel que arg z = 0 + kπ.
(2) z ∈ iR ⇐⇒ z = 0 ou ∃ k ∈ Z tel que arg z =

π

2
+ kπ.

POINT METHODE 2 La remarque précédente donne une autre méthode (voir celle passant par le conjugué) permettant
de montrer qu’un complexe est réel ou imaginaire pur.

8



Remarque 15 Soit z ∈ C∗: z = r(cos θ + i sin θ), avec r > 0 et θ ∈ R. Alors:
z = r cos θ − ir sin θ = r cos(−θ) + ir sin(−θ) car le cosinus est pair et le sinus impair. Donc: z = r(cos(−θ) + i sin(−θ)).
Conclusion: cette écriture étant unique, |z| = r = |z| (on le savait déjà!) et ∃ k ∈ Z tel que arg(z) = − arg z + 2kπ

On verra d’autres propriétés de l’argument dans la partie suivante (l’écriture exponentielle sera plus manipulable pour les
preuves).

2.2 Écriture exponentielle
Notation 1 ∀θ ∈ R, on note eiθ = cos θ + i sin θ.

Exemple 5 eiπ =

Remarque 16 ∀k ∈ Z, ∀θ ∈ R, ei(θ+2kπ) = eiθ.

Proposition 7 :
∗ ∀θ ∈ R,

(1) |eiθ| = 1 (2) eiθ = e−iθ

(3) ∀α, β ∈ R, ei(α+β) = eiα eiβ. Donc ∀n ∈ N, ∀θ ∈ R, einθ = (eiθ)n (récurrence).

Preuve: (basée sur les formules trigonométriques)
(1) |eiθ| = . . .

(2) eiθ = . . .
(3)

Remarque 17 ∀θ ∈ R,

Conclusion:
1

eiθ
= e−iθ ∀θ ∈ R

Proposition 8 (formules d’Euler): ∀θ ∈ R,

cos θ =
eiθ + e−iθ

2
et sin θ =

eiθ − e−iθ

2i

Preuve:

Proposition 9 (formule de Moivre): ∀n ∈ Z, ∀θ ∈ R,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

Preuve:
∗ Pour n ∈ N, c’est l’écriture trigonométrique de einθ = (eiθ)n.
∗ ∀n ∈ N, e−inθ = . . .
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Définition 8 Si z est un complexe non nul de module r et d’argument θ, on peut écrire:

z = r(cos θ + i sin θ) = reiθ .

Cette écriture est appelée forme exponentielle.

Exemple 6 :
(1) i = . . . , j = . . . , e2iπ = . . ., eiπ = . . .

(2)
√

3 + i = . . . , e2ikπ = . . ., ∀k ∈ Z.

Remarque 18 Avec cette écriture, on retrouve facilement que arg(z) = − arg(z) + 2kπ (k ∈ Z).
En effet: si z = reiθ alors z = reiθ = . . .
Plus généralement:

Proposition 10 ∀z1, z2 ∈ C∗,
(1) arg(z1z2) = arg(z1) + arg(z2) + 2kπ donc ∀n ∈ N, ∀z ∈ C∗, arg(zn) = n arg(z) + 2kπ (récurrence).

(2) ∀z ∈ C∗, arg(
1

z
) = − arg(z) + 2kπ donc arg(

z1
z2

) = arg z1 − arg z2 + 2kπ.

Preuve: On note z1 = r1e
iθ1 et z2 = r2e

iθ2 .
(1) z1z2 = . . .

(2)
z1
z2

=
r1e

iθ1

r2eiθ2
= . . .

Remarque 19 Si |z| = 1 alors z =
1

z
En effet: . . .

Exemple 7 On rappelle que j = ei
2π
3 vérifie:

2.3 Exponentielle complexe
Définition 9 Pour tout complexe z = a+ ib, on définit l’exponentielle de z par:

ez = ea eib = ea (cos b+ i sin b)

Proposition 11 ∀z1, z2 ∈ C, ez1+z2 = ez1 ez2 .

Preuve: Notons z1 = a+ ib et z2 = c+ id alors:

ez1 ez2 = ea eib ec eid = (eaec) (eib eid) = ea+cei(b+d) .

Or z1 + z2 = (a+ c) + i(b+ d) donc ez1+z2 = ea+cei(b+d). Ce qui achève la preuve.

3 Applications

3.1 Équations du second degré à coefficients réels
3.1.1 Racines carrées d’un réel strictement négatif

Rappel 1 L’équation x2 = a n’admet pas de solutions réelles si a < 0.
(Si a > 0, x2 = a ⇐⇒ x =

√
a ou x = −

√
a. )

Proposition 12 Si a < 0, on passe aux complexes: z2 = a ⇐⇒ z = i
√
−a ou z = −i

√
−a.

Autrement dit:

Les racines carrées d’un réel a < 0 sont i
√
−a et −i

√
−a

Exemple 8 Résoudre x1 + 1 = 0 dans C.

Preuve: (on rappelle que a2 + b2 = (a+ ib) (a− ib)), donc :
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3.1.2 Trinômes du second degré de discriminant ∆ < 0

Proposition 13 ∀z ∈ C, considérons P (z) = a z2 + bz + c, avec a 6= 0 (a, b, c ∈ R).
Supposons ∆ = b2 − 4ac < 0, alors
∗ P admet deux racines complexes conjuguées:

z1 =
−b+ i

√
−∆

2a
et z2 = z1 =

−b− i
√
−∆

2a
.

∗ Factorisation de P dans C:

az2 + bz + c = a

(
z − −b− i

√
−∆

2a

) (
z − −b+ i

√
−∆

2a

)
Preuve:

Exemple 9 Résoudre x2 + x+ 1 = 0 dans C.

3.1.3 Racines carrées d’un complexe

Soit un complexe a donné.
But: résoudre l’équation z2 = a dans C. On distingue trois cas :

• Si a est un réel positif :
z2 = a ⇐⇒ z =

√
a ou z = −

√
a, donc S =

{√
a,−
√
a
}

• Si a est réel strictement négatif : voir la partie 3.1.1.
z2 = a ⇐⇒ z = i

√
−a ou z = −i

√
−a donc S =

{
i
√
−a,−i

√
−a
}

• Si a ∈ C∗ \ R : a est un complexe non nul, non réel.
Sous quelle forme chercher z ? Tout dépend de a: peut-on écrire a sous forme exponentielle "facilement"?

11



– SI OUI : on cherche z sous forme exponentielle. Calculs à savoir refaire dans le cadre d’un exercice : il
existe r > 0 et θ ∈ R tels que a = r ei θ, donc :

z2 = a ⇐⇒ z2 =
(√

r ei
θ
2

)2
⇐⇒ z2 −

(√
r ei

θ
2

)2
= 0

⇐⇒
(
z −
√
r ei

θ
2

) (
z +
√
r ei

θ
2

)
= 0

⇐⇒ z =
√
r ei

θ
2 ou z = −

√
r ei

θ
2

Conclusion : S =
{√

r ei
θ
2 ,−
√
r ei

θ
2

}
Exemple 10 Résoudre z2 =

√
3− i.

– Si NON : on cherche z sous forme algébrique. Calculs (et raisonnement d’analyse-synthèse) à savoir refaire
dans le cadre d’un exercice: il existe deux réels x et y tels que z = x+ i y, donc

z2 = a ⇐⇒ (x+ i y)2 = Re(a) + i Im(a)

⇐⇒ (x2 − y2) + i (2xy) = Re(a) + i Im(a)

⇐⇒
{
x2 − y2 = Re(a)
2xy = Im(a)

Astuce : penser au module ! z2 = a donc |z|2 = |a|, soit : x2 + y2 = |a|, donc (équivalence perdue) :{
x2 − y2 = Re(a)
x2 + y2 = |a| ⇐⇒

{
x2 − y2 = Re(a)
2x2 = Re(a) + |a| L2 ← L2 + L1

Donc on obtient x2 donc deux valeurs pour x, puis y2 donc deux valeurs pour y.
Conclusion : Si z est solution, on obtient quatre valeurs possibles pour z.

Réciproquement : penser au signe du produit. x y =
Im(a)

2
, donc le signe du produit nous dit si x et y sont de

même signe ou de signe contraire, et il reste deux solutions à l’équation.

Exemple 11 Résoudre z2 = 3 + 4 i.

12



3.2 Suites récurrentes linéaires d’ordre deux, avec ∆ < 0

Rappel 2 Une suite (un)n∈N est récurrente linéaire d’ordre 2 s’il existe deux réels a et b tels que:
∀n ∈ N, un+2 = a un+1 + b un

Rappel 3 On appelle équation caractéristique de cette suite l’équation du second degré:

x2 = ax+ b ⇐⇒ x2 − ax− b = 0 .

CAPACITÉ EXIGIBLE 1 : Exprimer un en fonction de n.

1. Étape 1: résolution de l’équation caractéristique. de discriminant ∆.

2. Étape 2: Expression de un. Tout dépend du signe de ∆ . . .

(a) Si ∆ > 0 ou ∆ = 0, voir le chapitre Suites usuelles.
(b) Si ∆ < 0, l’équation caractéristique a deux racines complexes conjuguées, z1 et z2 = z1.

En écrivant ces racines sous forme trigonométrique: z1 = reiθ et z2 = re−iθ, on a:

Proposition 14 : ∃λ1, λ2 ∈ R/∀n ∈ N, un = rn (λ1 cos(nθ) + λ2 sin(nθ))

Remarque 20 Donner λ1 et λ2 en fonction de u0 et u1:

3.3 Équations trigonométriques de la forme a cosx + b sinx = c

Soient trois réels a, b, c. On se propose de résoudre dans R une équation du type:

a cosx+ b sinx = c

3.3.1 Transformation de a cos θ + b sin θ en r cos(θ − ϕ)

Supposons que r et ϕ existent:

a cos θ + b sin θ = r cos(θ − ϕ)

⇐⇒ cos(θ − ϕ) =
a

r
cos(θ) +

b

r
sin(θ) (ATTENTION! )

⇐⇒ ︸ ︷︷ ︸
formule trigonométrique

=
a

r
cos(θ) +

b

r
sin(θ)

Il suffit donc de prendre ϕ tel que: cosϕ = . . . . . . et sinϕ = . . . . . .. Mais deux questions se posent:
∗ est-ce possible?
∗ qui prendre pour r?

POINT METHODE 3 :

Posons z = a+ ib

Remarque 21 Si a = 0 et b = 0, on a clairement a cos θ + b sin θ = 0 = r cos(θ − ϕ), pour tout ϕ ∈ R.

On suppose donc dans la suite que a 6= 0 ou b 6= 0 Donc z 6= 0 et z a une écriture trigonométrique.

On note r =
√
a2 + b2 = |z| > 0, donc il existe ϕ ∈ R tel que

z = r (cos(ϕ) + i sin(ϕ)) = r cos(ϕ) + i r sin(ϕ)

Conclusion : z = a+ ib = r cos(ϕ) + i r sin(ϕ) donc :{
a = r cos(ϕ)
b = r sin(ϕ)

On obtient (calculs à savoir refaire):

a cos θ + b sin θ = r (cosϕ cos θ + sinϕ sin θ) = r cos(θ − ϕ) .
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Exemple 12 Transformer
√

3 cosx− sinx.

3.3.2 Application à la résolution d’équations a cosx+ b sinx = c

On suppose a 6= 0 ou b 6= 0

POINT METHODE 4 :

1. étape 1: utiliser la transformation
Il vient:

a cosx+ b sinx = c ⇐⇒ r cos(x− ϕ) = c ⇐⇒ cos(x− ϕ) =
c√

a2 + b2

Question: cette équation admet-elle toujours des solutions?

Dans la suite, on suppose que
c√

a2 + b2
∈ [−1, 1].

2. étape 2: Homogénéiser l’équation
On transforme

c√
a2 + b2

en cosα (α ∈ R) afin de se ramener à l’équation trigonométrique cos(x− ϕ) = cosα.

(on admet l’existence de α . . .)
On termine maintenant la résolution: cos(x− ϕ) = cosα ⇐⇒ . . .

Exemple 13 Résoudre
√

3 cosx− sinx =
√

3.

3.4 Formules d’Euler et applications
Rappel 4 : Formules d’Euler.
∀θ ∈ R,

cos θ =
eiθ + e−iθ

2
et sin θ =

eiθ − e−iθ

2i
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3.4.1 Technique de l’angle moyen

But: calcul des parties réelle et imaginaire d’un complexe exprimé sous forme de somme d’exponentielles.

Proposition 15 (technique de l’angle moyen): ∀α, β ∈ R,

(1) eiα + eiβ = 2 cos(
α− β

2
)ei

α+β
2 .

(2) eiα − eiβ = 2i sin(
α− β

2
)ei

α+β
2 .

Preuve (à savoir refaire): basée sur les formules d’Euler

POINT METHODE 5 : calcul des parties réelle et imaginaire.

Exemple 14 z =
1− eiθ

1 + eiθ
.

Pour quels réels θ, z est-il bien défini?

1. Technique de l’angle moyen pour chaque somme ou différence d’exponentielles:

2. Exhiber les parties réelle et imaginaire:

Rappel 5 ∀λ ∈ R, Re(λz) = λRe(z) et Im(λz) = λIm(z), donc:

3.4.2 Technique de calcul de sommes et produits contenant des termes en cosinus et sinus

POINT METHODE 6 : se ramener à une somme géométrique en passant par l’écriture exponentielle.

Exemple 15 Calculer
n∑
k=0

cos k.

1. Interpréter le cosinus (resp. sinus) comme la partie réelle (resp. imaginaire) d’un complexe:

Remarque 22 ∀θ ∈ R, cos θ = Re(eiθ) et sin θ = Im(eiθ)

cos k = Re(eik)

2. Utiliser la Proposition 1:
n∑
k=0

cos k =

n∑
k=0

Re(. . . . . .) = Re( ) .
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3. Se ramener à une somme géométrique:
n∑
k=0

eik =

n∑
k=0

(. . . . . .)k =
??
. . . .

4. Calculer la partie réelle (ou imaginaire) du résultat complexe obtenu:
Dans cet exemple, on est ramenés à la technique de l’angle moyen. On obtient:

Conclusion:
n∑
k=0

cos k = Re(

n∑
k=0

eik) =
cos(n2 ) sin(n+1

2 )

sin( 1
2 )

.

3.4.3 Technique de linéarisation

But: transformer une expression contenant des termes en cosp x et sinp x en termes de la forme cos(px) et sin(px).

POINT METHODE 7 : technique de linéarisation.

Exemple 16 Linéariser cos4 x.

1. Utiliser les formules d’Euler:

cosx =
eix + e−ix

2
.

2. Utiliser le binôme de Newton et penser à regrouper les termes:

cos4 x =

(
eix + e−ix

2

)4

3. Utiliser à nouveau les formules d’Euler:

cos4 x =
1

16
(6 + 2 cos(4x) + 8 cos(2x)) =

3

8
+

1

8
cos(4x) +

1

2
cos(2x) .

3.5 Application de la formule de Moivre
Rappel 6 : Formule de Moivre.
∀n ∈ Z, ∀θ ∈ R,

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

POINT METHODE 8 : technique d’antilinéarisation.

Exemple 17 Calculer cos(3θ) et sin(3θ) en fonction de cos θ et sin θ.

1. Utiliser le binôme de Newton pour développer (cos θ + i sin θ)3:
(cos θ + i sin θ)3 = . . .

2. Utiliser la formule de Moivre pour développer (cos θ + i sin θ)3:

(cos θ + i sin θ)3 = cos(3θ) + i sin(3θ) .

3. Égaler les parties réelle et imaginaire des deux expressions précédentes:
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