Nombres complexes

BCPST 1C — Mme MOREL

Pour déterminer toutes les solutions d’une équation polynomiale, il a fallu introduire de "nouveaux" nombres.

En effet, par exemple, ’équation 22 = a n’a pas de solutions réelles si a < 0.

Ainsi, on nomme 7 un nombre tel que 2 = —1, puis on construit rigoureusement I’ensemble des complexes C (contenant R).
L’équation 22 = a pour a < 0 aura alors des solutions complexes.

1 Forme algébrique

1.1 Présentation

Définition 1 L’ensemble des nombres complexes est [’ensemble ’ C={a+ib/a,be R} ‘ ot i% = —1, muni d’une addition

(notée +) et d’une multiplication (notée x ) qui vérifient les régles usuelles de l'addition et de la multiplication dans R, soit:
e (a+ib)+ (c+id)=(a+c)+i(b+d).
e (a+1b) x (c+id) = (ac — bd) + i(ad + be).

Définition 2 :
(1) Soit z € C. L’écriture z = a + ib, avec a,b € R est la forme algébrique de z.
(2) Siz=a+1ibeC,

a est appelé partie réelle de z, notée m

b est appelé partie imaginaire de z, notée | b = Im(z)

Remarque 1 La forme algébrique est unique, i.e. deux complexes sont égaux ssi ils ont méme partie réelle et méme partie
imaginaire. En d’autres termes: Va,b,c,d € R,

a==¢c

b=d

a+ib=c+id <— {

Remarque 2 RC Cet z € R < Im(z) =0.
Les nombres complexes de la forme a + i0 sont donc naturellement identifiés a R.

Définition 3 Les nombres complexes z tels que Re(z) =0 (de la forme ib, b € R) sont appelés les imaginaires purs.
Leur ensemble est noté

Théoréme 1 Muni des opérations + et x, C satisfait les propriétés suivantes :

1. Associativité de ’addition :
Vz,2' 2" €Coz+ ( +2")=(z+7)+ 2"

2. 0 =0+ 07 est élément neutre pour ’addition :

VzeC,z40=0+2z=z.

3. Existence d’un opposé pour ’addition :

VzeC,weC,z+w=w+2z=0.

4. Commutativité de I’addition :
Vz,weCz+w=w+ z.

5. Associativité du produit :
Vz,2', 2" € C,(22')2" = 2(2'2").

6. 1 =1+ 0:¢ est élément neutre pour le produit :

VzeC,lxz=2x1=z.



7. Commutativité du produit :
Vz,w e C, zw = wz.

8. Distributivité de x sur + :
V2,2, 2" € C, 2(2 +2") = 22" + 22"

9. Existence d’un inverse pour X, pour tout élément non nul :

VzeC* dweC, zw=wz=1.

Preuve:



Proposition 1 Vz1,z5 € C, VA €R,
(1) Re(z1 + z2) = Re(z1) + Re(zq) et Im(z1 + z2) = Im(z1) + Im(z2).
(2) Re(Az1) = ARe(z1) et Im(Az1) = AIm(z1).

Preuve:
]
Remarque 3 On en déduit: pour tous complexes z1, ..., 2x,
Re <Z zk> = ZRe(zk) et Im (Z zk> = ZIm(zk)
k=1 k=1 k=1 k=1

Définition 4 (représentation géométrique):

N
Le plan est rapporté a un repére orthonormal (O, i, 7).

(1) Soit M un point du plan de coordonnées (a,b), a,b € R.
On dit que le complexe z = a + ib est I’affixe du point M, et on note M (z).
L’aze des abscisses (O;) est ’axe des réels et 'aze des ordonnées (O,) est ’axe des imaginaires purs.
—

— — —
(2) Le vecteur OM=a i +b j donc z est aussi I’affixe du vecteur OM

Remarque 4 : ATTENTION! ’ Pas de relation d’ordre (<) dans Cl!! ‘

Remarque 5 Interprétation géométrique de la somme de deux complexes.
Soient M et M’ deux points du plan complexe d’affixes z et 2’ respectivement. Le point N d’affixe z + 2z’ donne la relation

— — —
vectorielle: ON=0OM + OM’.
Donc le quadrilatéere OM N M’ est un parallélogramme et:

la somme de deux complexes z et 2’ est représentée par la diagonale principale du parallélogramme OMN M.

—
De méme, la différence 2z’ — z est affixe du vecteur MM':

la différence de deux complexes z et 2’ est représentée par la diagonale secondaire du parallélogramme OM N M'.



1.2 Complexe conjugué

Définition 5 Pour tout complexe z = a +ib (a,b € R), on définit son conjugué, notée z, par:
Z=a—1b.
Donc Re(Z) = Re(z) et Im(z) = —Im(z).

Remarque 6 : Représentation géométrique.

Soit M(z) le point du plan d’affixe z, M(Z) est le symétrique de M(z) par rapport & ’axe des abscisses (O,,).

Exemgle 1:

1)i=...
V3

1
(2) On note le complexe | j = —3 +1 5

alors j = ...

Remarquons que j2 = donc: |j2 =73

Proposition 2 (régles de calcul): Soient 21,29 € C.
(2) Z1 22 = Z1 Z3 donc Vn € N, Vz € C, 2™ =Z" (récurrence).

zZ1 1 1
(3) Si zo # 0, (zl> = 2:1 donc Vn € N, Vz € C*, (n) = — (récurrence).
29 z z

22

Preuve:

Remarque 7 D’aprés (2) et (3): ’Vn €Z,NzeC,z"=%" (avec z # 0 sin < 0) ‘

Proposition 3 Soit z € C.
(1)Z = z.

(2) Re(z) = Z2j donc z € IR < 2z = —Z.

(3)Im(z):% donc z€R <= z=7%2.

POINT METHODE 1 : Comment montrer qu’un complexe est réel ou imaginaire pur?

1. En passant par le conjugué: calculer Z et aboutir & z ou —z.



2. En passant par un argument (voir partie 2.1)

Preuve:

1.3 Module

Remarque 8 : représentation géométrique.

—
Soit M(z) le point du plan d’affixe z = a + ib. z est aussi 'affixe du vecteur OM.

— —
On rappelle que la norme du vecteur OM (ou la distance entre O et M) est donnée par: |OM|= va? + b2.
Cela définit le module de z...

Définition 6 Soit z =a+ib € C. On définit son module, noté |z| par:
|z| = Va? +b2.

Remarque 9 :
(1) Cohérence de la notation: si z = a +i0 alors |z| = Va2 = |a|
—~

module valeur absolue

Donc ’ le module d’un réel coincide avec sa valeur absolue |, donc la notation du module est cohérente.

(2) On a aussi: | |z| =VzZ
En effet: 2z = (a + ib)(a — ib) = a® + b.

Exemple 2 |i| = ... et |j| = donc | [j| =1

Remarque 10 :

(1) ATTENTION! Vz € C, |z| = 0!l
Le module étant une distance, c’est un réel positif. On peut donc comparer des modules (utiliser des encadrements) alors
qu’on ne peut le faire pour des complexes (cf remarque 3).

(2) On a déja vu que |z| est la distance entre O et M (z). Généralisation:

JEEN
Soient deux points du plan A et B respectivement d’affixes z4 = a + ib et zg = ¢+ id. On rappelle que le vecteur AB a
—

pour norme (distance entre A et B) ||AB||= /(c —a)2 + (d — b)2.

—
Or c—a= Re(zp —za) et d—b = Im(zp — z4) donc ||AB||= |z — za]|-




Conclusion: |le module |zp — z4| est la distance entre deux points A et B

Exemple 3 :
(1) On note Y = {z € C/|z| = 1} 'ensemble des complexes de module 1.

C’est le cercle unité (de centre O et de rayon 1)!
(2) Soient a € C et r € [0, 400
Alors D ={z € C/|z — a| < r} est le disque de centre A d’affixe a et de rayon r:

Proposition 4 :
(1)Vz2€C, |z2| =0 <= z=0 et |z] = |7
(2) V21,22 € C, |21 22| = |21] |22] donc ¥n € N, Vz € C, |2"| = |2|" (récurrence).
1 "
(8) Vz1,22 € C, 21 —@ donc Vn € N, Vz € C*, | — -

PN AL z

%)

Preuve:

Remarque 11 D’aprés (2) et (3): ’Vn €Z,VzeC, |z" = |2|" (avec z # 0 sin < 0)‘

Proposition 5 (inégalités triangulaires): Pour tous complexes z1, z2:
(1) |21 + 22| < |21| + |22].
(2) |21 — 22| 2 ||21] — |22]|.



Preuve:

2 Forme trigonométrique

2.1 Argument d’un complexe non nul

Définition 7 (représentation géométrique): le plan est rapporté a un repére orthonormal direct.

Soit M(2z) un point du plan (autre que lorigine) d’affize z.
—_ —
Une mesure de U'angle orienté (§,0OM) est noté |0 = arg(z) | et appelé argument de z.

Remarque 12 :
- —
(1) ATTENTION! Le complexe nul n’a pas d’argument puisque angle (i, O ) n’est pas défini!
(2) Un point M du plan d’affixe z est déterminé par son module et un argument:
on parle de coordonnées polaires.

Proposition 6 Tout complexe non nul z s’écrit de maniére unique:
z =r(cosf +isinb),

ou:
o r=|z| >0 est le module de z,
o 0 =arg(z) € R est défini a un multiple de 27 pres.
L’écriture z = r(cos 0 + isinf) est la forme trigonométrique du compleze z.



Preuve:

Remarque 13 : Récapitulation des points importants de la preuve.
(1) Unicité de D’écriture: en d’autres termes, Vry,re > 0, V07, 62 € R,

T =T2

r1(cosfy + isindy) = ro(cos s + isinfy) <— { Tk e, 0y 0y + 2k

(2) Lien entre la forme algébrique (z = a + ib) et la forme trigonométrique (z = |z|(cos(arg z) + isin(arg z)) pour tout
complexe z non nul:

b
|z] = Va2 + b2, cos(arg z) = + et sin(arg z) =
a

T2 VaZ £ b2
Exemple 4 :
i=...
1
(2) On rappelle: j = ) —|—i§. l7] = ... (déja vu)

2 2
Donc: |j = cos(%) + isin(?ﬂ-)

(3) z=V3+i#0. |z|=...

Remarque 14 :
(1) 2e€R < z=0o0u3Jk € Ztel que argz = 0+ k7.

(2) z € iR «— z:OoquEZtelqueargz:g—kkw.

POINT METHODE 2 La remarque précédente donne une autre méthode (voir celle passant par le conjugué) permettant
de montrer qu’un complexe est réel ou imaginaire pur.



Remarque 15 Soit z € C*: z = r(cosf + isinf), avec r > 0 et § € R. Alors:
Z =rcosf —irsinf = rcos(—0) + irsin(—0) car le cosinus est pair et le sinus impair. Donc: Z = r(cos(—6) + isin(—#6)).

Conclusion: cette écriture étant unique, [Z| = r = |z| (on le savait déjal) et ’ Jk € Z tel que arg(z) = —argz + Qkﬂ"

On verra d’autres propriétés de 'argument dans la partie suivante (1’écriture exponentielle sera plus manipulable pour les
preuves).

2.2 Ecriture exponentielle

Notation 1 V6 € R, on note ¢ = cos@ + isin 6.
Exemple 5 ™ =
Remarque 16 Yk € Z, V0 € R, ¢! (0+2km) — ¢if

Proposition 7 :
* VO € R, 4 L .
(1) \ela| =1 (2) e = e~

(3) Ya, B € R, e@th) = i@ eiB. Donc V¥n € N, VO € R, e = (&)™ (récurrence).

Preuve: (basée sur les formules trigonométriques)
(1) | = ...

(2) e = ...
3)

|
Remarque 17 V0 € R,
: 1 —if
Conclusion: | — =e™" V0 € R
el
Proposition 8 (formules d’Euler): V6 € R,
9 4 ,—if 0 _ —if
cosf = % et sinf = %
Preuve:
|
Proposition 9 (formule de Moivre): Vn € Z, V0 € R,
’ (cos @ +isin @)™ = cos(nh) + isin(nh) ‘
Preuve:
* Pour n € N, c’est Décriture trigonométrique de e™? = (e?)".
sVneN, e =
|



Définition 8 Si z est un complexe non nul de module v et d’argument 8, on peut écrire:

z=r(cosh +isinf) = re’ .

Cette écriture est appelée forme exponentielle.

Exemple 6 :
Mi=...,j=...,e¥" = ¢™=...
2)V3+i=... ,e¥" = VkeZ
Remarque 18 Avec cette écriture, on retrouve facilement que arg(z) = — arg(z) + 2k7 (k € Z).

En effet: si z = re'? alors 7 = ret® = . ..
Plus généralement:

Proposition 10 Vz,zy € C*,
(1) arg(z122) = arg(z1) + arg(ze) + 2km donc Vn € N, Vz € C*, arg(z") = narg(z) + 2km (récurrence).
(2) Vz € C*, arg(—) = —arg(z) + 2km donc arg(ﬂ) = argz — arg zo + 2km.
z Z2
Preuve: On note z; = r1€91 et 29 = rqeif2.
(1) Z1R29 — . .
2z et

2) 2 = =

2o Toetf2

1
Remarque 19 |Si |z| =1 alors Z = —
z

En effet: ...

;27

Exemple 7 On rappelle que j = e'3 vérifie:

2.3 Exponentielle complexe

Définition 9 Pour tout complexe z = a + ib, on définit ’exponentielle de z par:

e* = e%ell = o (cosb—l—isinb)‘

Proposition 11 Yz, zy € C, e®1172 = 71 72,
Preuve: Notons z; = a + b et 29 = ¢ + id alors:
71 %2 — % e’ib e eid _ (eaec) (eib eid) — ea+cei(b+d) ]

Or 21 + 23 = (a + ¢) + i(b + d) donc e®17%2 = ea+¢c!+d) (e qui achéve la preuve.

3 Applications

3.1 Equations du second degré a coefficients réels

3.1.1 Racines carrées d’un réel strictement négatif

Rappel 1 L’équation 2 = a n’admet pas de solutions réelles si a < 0.

(Sia>0,22=a < z=\aouz=—a.)

Proposition 12 Sia < 0, on passe aux complexes: 2> = a <= z=1i\/—a ouz = —i/—a.
Autrement dit:

’Les racines carrées d’un réel a < 0 sont i/—a et —i —a‘

Exemple 8 Résoudre 2! + 1 = 0 dans C.

Preuve: (on rappelle que a® + b% = (a + ib) (a — ib)), donc :

10



3.1.2 Trinémes du second degré de discriminant A < 0

Proposition 13 Vz € C, considérons P(z) = a2 + bz + ¢, avec a # 0 (a,b,c € R).
Supposons A = b? — 4ac < 0, alors
* P admet deux racines complexes conjuguées:

—b+ivV=A _ —b—i/A
S T T

* Factorisation de P dans C:

0 brte—a (Z_—b—l V—A> <Z_—b+z V—A>

2a 2a

Preuve:

Exemple 9 Résoudre 22 +z + 1 = 0 dans C.

3.1.3 Racines carrées d’un complexe

Soit un complexe a donné.

But: résoudre I’équation 22

= a dans C. On distingue trois cas :

e Si a est un réel positif :
2

2?=a < z=/a ou z=—/a,donc|S = {Va,—a}

e Si a est réel strictement négatif : voir la partie 3.1.1.

22=a < z=1i+/—aou z= —iy/—a donc S:{i\/—a,—i\/—a}

e SiaeC*\R: a est un complexe non nul, non réel.
Sous quelle forme chercher z ? Tout dépend de a: peut-on écrire a sous forme exponentielle "facilement"?

11



— SI OUI : on cherche z sous forme exponentielle. Calculs a savoir refaire dans le cadre d’un exercice : il
existe 7 > 0 et # € R tels que a = 7e*?, donc :

2

2
0
2 =a < 22:(\/;615)

= - (x/?ei%)QzO

<~ (Zf\/;ei%> <z+ﬁeig) —

0 ]
= z=+/re'2z ou z=—re':

Conclusion :

0 0
Sz{\/;ezz,— rez

)

Exemple 10 Résoudre 22 = /3 —i.

— Si NON : on cherche z sous forme algébrique. Calculs (et raisonnement d’analyse-synthése) a savoir refaire

dans le cadre d’un exercice: il existe deux réels x et y tels que z = x + iy, donc

2

Astuce 2

: penser au module ! z
22—y = Re(
2 +y* = |df

2?=a < (z+iy)?> = Re(a) +iIm(a)

— (2% —y?) +i(2zy) = Re(a) +iIm(a)

22 — 2
2zy

Re(a)
Im(a)

=1

= a donc |z]? = |a|, soit :
a) 22 —y? = Re(a)
— { 2 22 = Re(a) + |a]

Donc on obtient 22 donc deux valeurs pour z, puis ¥ donc deux valeurs pour y.

Conclusion : Si z est solution, on obtie

1
Réciproquement : penser au signe du produit. zy =

méme signe ou de signe contraire, et il res

Exemple 11 Résoudre 22 = 3 4 4.

nt quatre valeurs possibles pour z.

m(a)

te deux solutions a I’équation.

12

2?2 + y? = |al, donc (équivalence perdue) :

Lo+ Lo+ L4

, donc le signe du produit nous dit si z et y sont de



3.2 Suites récurrentes linéaires d’ordre deux, avec A < (

Rappel 2 Une suite (u,)nen est récurrente linéaire d’ordre 2 s’il existe deux réels a et b tels que:

Vn €N, Upto = atpt1 —i—bun‘

Rappel 3 On appelle équation caractéristique de cette suite I’équation du second degré:

2

P=ar+b = 2?

—axr—b=0.
CAPACITE EXIGIBLE 1 : Exprimer u, en fonction de n.
1. Etape 1: résolution de ’équation caractéristique. de discriminant A.
2. Etape 2: Expression de u,. Tout dépend du signe de A ...

(a) Si A >0 ou A =0, voir le chapitre Suites usuelles.

(b) Si A <0, l’équation caractéristique a deux racines complexes conjuguées, z; et zo = Z7.

En écrivant ces racines sous forme trigonométrique: z; = re’? et 2o = re~%, on a:
Proposition 14 : |3\, A2 € R/Vn € N, u, =7" (A1 cos(nd) + A sin(nd)) ‘
Remarque 20 Donner A\; et Ay en fonction de ug et ug:
3.3 Equations trigonométriques de la forme acosz + bsinz = ¢
Soient trois réels a, b, c. On se propose de résoudre dans R une équation du type:
acosx +bsinx =c
3.3.1 Transformation de acosf + bsinf en rcos(6 — p)
Supposons que r et @ existent:
acosf + bsind = rcos(6 — @)
a b
<= cos(f — ) = — cos(f) + — sin(f) (ATTENTION! )
T r
a b
— = — cos(f) + — sin(0)
r T
formule trigonométrique
Il suffit donc de prendre ¢ tel que: cosp =...... etsinp=....... Mais deux questions se posent:

* est-ce possible?
* qui prendre pour r?

POINT METHODE 3 :

Posons

Remarque 21 Sia=0et b=0, on a clairement acosf + bsinf = 0 = r cos(d — ), pour tout ¢ € R.

On suppose donc dans la suite que |a # 0 ou b # 0 | Donc z # 0 et z a une écriture trigonométrique.

On note r = v a? + b2 = |z| > 0, donc il existe ¢ € R tel que
z =1 (cos(p) + i sin(p)) =r cos(p) + ir sin(p)
Conclusion : z = a +ib =1 cos(p) + ir sin(p) donc :

{42 onte)

On obtient (calculs a savoir refaire):

acosf + bsind =1 (cosp cos + sinp sinh) = r cos(d — ).

13



Exemple 12 Transformer V3 cosz — sinz.

3.3.2 Application a la résolution d’équations acosz + bsinz = ¢

On suppose [a A0 ou b #0

POINT METHODE 4 :

1. étape 1: utiliser la transformation

Il vient:
c

Ve

acosx +bsinz =c <= rcos(zx —p) =c <= cos(x —p) =

Question: cette équation admet-elle toujours des solutions?

Dans la suite, on suppose que ——— € [—1,1].
a® + b2
2. étape 2: Homogénéiser ’équation
c
On transforme ————= en cosa (« € R) afin de se ramener & 1’équation trigonométrique cos(xz — ¢) = cos a.

Va? + b?
(on admet lexistence de «v .. .)
On termine maintenant la résolution: cos(x — ¢) = cosa < ...

Exemple 13 Résoudre /3 cosz — sinz = /3.

3.4 Formules d’Euler et applications

Rappel 4 : Formules d’Euler.
Vo € R,

ei0 1 o—i0 . o0 —i0
cosf = — et sinf =

14



3.4.1 Technique de ’angle moyen

But: calcul des parties réelle et imaginaire d’un complexe exprimé sous forme de somme d’exponentielles.

Proposition 15 (technique de ’angle moyen): Vo, € R,

(1) e + e = QCOS(OZQ;B)ei%ﬁ
(2) e — e =2j sin(a ; ﬂ)eiu;ﬁ

Preuve (a savoir refaire): basée sur les formules d’Euler

POINT METHODE 5 : calcul des parties réelle et imaginaire.

0

1—
Exemple 14 z = S
1 et

Pour quels réels 0, z est-il bien défini?

1. Technique de I’angle moyen pour chaque somme ou différence d’exponentielles:

2. Exhiber les parties réelle et imaginaire:

Rappel 5 VA € R, Re(A\z) = ARe(z) et Im(Az) = AIm(z), donc:

3.4.2 Technique de calcul de sommes et produits contenant des termes en cosinus et sinus

POINT METHODE 6 : se ramener a une somme géométrique en passant par 1’écriture exponentielle.

Exemple 15 Calculer ZCOS k.
k=0

1. Interpréter le cosinus (resp. sinus) comme la partie réelle (resp. imaginaire) d’un complexe:

Remarque 22 V0 € R, ’cos@ = Re(e") et sinf = Im(e'?) ‘

cosk = Re(e'*)

2. Utiliser la Proposition 1:

15



3. Se ramener a4 une somme géométrique:
n n

ik _ k _

e =3 (...... =....
S =3 ) s

k=0 k=0

4. Calculer la partie réelle (ou imaginaire) du résultat complexe obtenu:
Dans cet exemple, on est ramenés a la technique de ’angle moyen. On obtient:

Conclusion:

3) sin("4)

Zcosk‘ = Re(z ey = %
= ‘ sin(s)

k= 2

3.4.3 Technique de linéarisation

But: transformer une expression contenant des termes en cos? = et sin” x en termes de la forme cos(pz) et sin(pzx).

POINT METHODE 7 : technique de linéarisation.

Exemple 16 Linéariser cos? z.

1. Utiliser les formules d’Euler: ) )
el$ + e—’LIE
2

2. Utiliser le binéme de Newton et penser a regrouper les termes:

; iz 4
n e’L(L‘_‘_e T
cos T = | ———
2

COST =

3. Utiliser a nouveau les formules d’Euler:

1 3 1 1
cos* v = 16 (6 4+ 2 cos(4x) + 8cos(2z)) = 3 + 3 cos(4x) + 3 cos(2x) .

3.5 Application de la formule de Moivre

Rappel 6 : Formule de Moivre.
Vn € Z,V0 € R,

’ (cosf + isin )" = cos(nf) + isin(nd) ‘

POINT METHODE 8 : technique d’antilinéarisation.

Exemple 17 Calculer cos(36) et sin(36) en fonction de cos@ et sin6.

1. Utiliser le binébme de Newton pour développer (cosf + isinf)?:
(cos@ +isind)® = ...

2. Utiliser la formule de Moivre pour développer (cos@ + isin§)?:
(cos® +isin ) = cos(30) + isin(36) .

3. Egaler les parties réelle et imaginaire des deux expressions précédentes:
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