Nombres complexes

I. Manipulation de la forme algébrique

Exercice 1 Déterminer la forme algébrique des complexes suivants:

1.
$$2(1+i)+i(2i-1)$$

$$8. \ \frac{\frac{1}{2} - i\frac{\sqrt{3}}{2}}{-1 + i}$$

13.
$$(1 - i\sqrt{2})^2$$

2.
$$\sqrt{2}(1-i) + 2\sqrt{2}i(1+i)$$

9.
$$\frac{1+i\sqrt{3}}{\sqrt{3}-i}$$

14.
$$\left(\frac{2}{3} + \frac{1}{2}i\right)^2$$

4.
$$(1+i)(3+2i)$$

10.
$$\frac{(2-i)(5+2i)}{3-4i}$$

15.
$$(1+i)^3$$

5.
$$\left(2\sqrt{2} + i\sqrt{3}\right) \left(3i\sqrt{3} - \sqrt{2}\right)$$

3. $\frac{\sqrt{2}}{2} \left(\frac{1}{2} + \frac{1}{2}i \right) - \frac{1}{2} (2i+1)$

10.
$$\frac{(2-i)(3+2i)}{3-4i}$$

16.
$$(\sqrt{2}-i)^4$$

6.
$$\left(2\sqrt{2} - i\frac{\sqrt{3}}{3}\right)\left(\sqrt{3} - i\sqrt{2}\right)$$

$$11. \ \overline{\left(\frac{1}{2i+4}\right)}$$

17.
$$(1+j)^5$$

$$7. \ \frac{1}{2\sqrt{2}-i}$$

$$12. \ \overline{\left(\frac{i+3}{1-4i}\right)}$$

$$18. \left(\frac{1}{1+j}\right)^4.$$

Exercice 2 Pour tout $n \in \mathbb{N}$, donner la forme algébrique de : $i^n + i^{n+1} + i^{n+2} + i^{n+3}$

II. Formes algébrique, trigonométrique et exponentielle

Exercice 3 Donner le module et un argument des complexes suivants:

1.
$$2-2i$$

5.
$$\frac{(1+i\sqrt{3})^3}{(1-i)^5}$$
.

8. Pour
$$\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\sin \alpha + i \cos \alpha$$

2.
$$-1 + i\sqrt{3}$$

3. $\left(-1 + \frac{i}{\sqrt{3}}\right)^6$

6.
$$(1+j)^5$$

9. Pour
$$\alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, 1 + i \tan \alpha.$$

4.
$$\frac{(\sqrt{3}+i)^2}{(1+i)^3}$$

$$7. \left(\frac{1}{1+j}\right)^4.$$

10.
$$\forall n \in \mathbb{N}, z_n = (-1)^n + i\sqrt{3}.$$

Exercice 4 Écrire les nombres complexes suivants sous forme exponentielle:

1.
$$z_1 = 1 + i$$

2.
$$z_2 = \frac{\sqrt{3} + i}{1 - i}$$

3.
$$z_1 = e^{i\frac{\pi}{3}} + e^{i\frac{\pi}{6}}$$

4.
$$z_2 = 1 - e^{i\theta}$$

Exercice 5 Écrire les nombres complexes suivants sous forme trigonométrique :

1.
$$z_1 = e^{i\frac{\pi}{3}} - e^{i\frac{\pi}{2}}$$

$$2. \ z_2 = \frac{1 + e^{i\frac{\pi}{6}}}{1 - e^{i\frac{\pi}{12}}}$$

3.
$$z_1 = \left(1 + e^{i\frac{\pi}{6}}\right)^{27}$$
 4. $z_1 = 1 + i e^{i\frac{\pi}{3}}$

4.
$$z_1 = 1 + i e^{i\frac{\pi}{4}}$$

Exercice 6 Calculer:

1.
$$(1-i)^{20}$$

2.
$$(1 - i\sqrt{3})^7$$

3.
$$(1+i\sqrt{3})^9$$

Exercice 7 On considère le nombre complexe $z=\sqrt{2-\sqrt{3}}-i\sqrt{2+\sqrt{3}}$. Calculer z^2 et en déduire module et argument de z.

Exercice 8 On considère le nombre complexe $z = \frac{1 + \sqrt{2} + i}{1 + \sqrt{2} - i}$.

- 1. Calculer |z|
- 2. Donner la forme algébrique de z
- 3. Calculer z^{2022}

Exercice 9 Trouver tous les entiers $n \in \mathbb{N}$ tels que $(1+i\sqrt{3})^n$ soit un réel positif.

III. Nombres complexes et trigonométrie

Exercice 10 Soient les complexes $z_1 = 1 - i\sqrt{3}$ et $z_2 = -1 - i$.

- 1. Donner la forme algébrique de $\frac{z_1}{z_2}$.
- 2. Mettre $\frac{z_1}{z_2}$ sous forme trigonométrique.
- 3. En déduire $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.

Exercice 11 On pose a = 1 + i et $b = \sqrt{3} - i$.

- 1. Déterminer le module et un argument de a, b et ab. Trouver la forme algébrique de ab.
- 2. En déduire les valeurs exactes de $\cos\frac{\pi}{12}$ et $\sin\frac{\pi}{12}$

En déduire les valeurs exactes de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$.

Exercice 12: Formules trigonométriques.

Pour tous $p, q \in \mathbb{R}$, en remarquant que $\cos p + \cos q = Re(e^{ip} + e^{iq})$, retrouver la formule trigonométrique:

$$\cos p + \cos q = 2\cos(\frac{p+q}{2})\,\cos(\frac{p-q}{2})$$

Exercice 13 Résoudre dans \mathbb{R} : $\sin x + \sin(2x) + \sin(3x) = 0$. On remarquera que $\sin(kx) = Im(e^{ikx})$

Exercice 14 Résoudre dans \mathbb{R} :

1.
$$\cos(2x) - \sqrt{3}\sin(2x) = -\sqrt{2}$$
 2. $-\sqrt{2}\cos(x) + \sqrt{2}\sin(x) = 1$

Exercice 15 Soit $\lambda \in \mathbb{R}$, on considère l'équation $\sqrt{3} \cos x - \sin x = \lambda$.

- 1. Pour quelles valeurs de λ cette équation a-t-elle des solutions dans \mathbb{R} ?
- 2. Déterminer toutes les solutions de l'équation lorsque $\lambda = \sqrt{2}$.

Exercice 16 Résoudre dans \mathbb{R} :

1.
$$\sin x - \cos x > 1$$
 2. $-\sin(3x) + \sqrt{3}\cos(3x) < 1$

IV. Résolution d'équations

Exercice 17 Exprimer le terme général en fonction de n: $\begin{cases} w_0 = 1, w_1 = 1 \\ \forall n \in \mathbb{N}, w_{n+2} = w_{n+1} - w_n \end{cases}$

Exercice 18 Exprimer le terme général en fonction de n: $\begin{cases} u_0 = 2, u_1 = \frac{1}{2} \\ \forall n \in \mathbb{N}, u_{n+2} = \frac{\sqrt{3}}{2} u_{n+1} - \frac{1}{4} u_n \end{cases}$

Exercice 19 Calculer les racines carrées des nombres complexes suivants: $z_1 = 15 - 8i$ et $z_2 = 8 - 6i$.

Exercice 20 Résoudre dans \mathbb{C} :

1.
$$z^2 + \frac{11}{4} = 0$$
 3. $\frac{3z+2}{z+1} = z+3$ 6. $\overline{z}^2 - \overline{z} + 1 = 0$.

4.
$$z^2 - 2iz - 1 + 2i = 0$$
5. $2z + i - \overline{z} + 1$
7. $z + \frac{1}{z} = 2\cos\theta$, avec $\theta \in]0$

2.
$$(1+i) z^2 = (2-i) z$$
 5. $2z + i = \overline{z} + 1$ 7. $z + \frac{1}{z} = 2\cos\theta$, avec $\theta \in]0, \pi[$.

Exercice 21 Résoudre dans \mathbb{C} :

1.
$$z^4 + z^2 - 12 = 0$$

3.
$$\frac{\overline{z}-2i}{\overline{z}-1}+1+i=0$$

$$2. \ 2i\overline{z} - i = 2(\overline{z} - 5) + i$$

4.
$$1 + \left(\frac{z+1}{z-1}\right) + \left(\frac{z+1}{z-1}\right)^2 = 0$$
on donnera les solutions sou forme algébrique.

V. Calcul de sommes trigonométriques

Exercice 22 Pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$, calcular $\sum_{k=0}^{n} \cos(kx)$ et $\sum_{k=0}^{n} \sin(kx)$.

Exercice 23 $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \text{ calculer les sommes:}$

$$S_n(x) = \sum_{k=0}^n \binom{n}{k} \cos(kx) \text{ et } T_n(x) = \sum_{k=0}^n \binom{n}{k} \sin(kx)$$

Exercice 24 Pour tout entier n, on considère la somme:

$$S_n(x) = \sum_{k=0}^{n} \frac{\cos(kx)}{(\cos x)^k}$$

- 1. Pour quels x, S_n est-elle bien définie?
- 2. Calculer alors $S_n(x)$.

Exercice 25:

1. Soit $n \in \mathbb{N}^*$. Établir que:

$$\forall x \in]0, \pi[, \sum_{k=0}^{n-1} \sin((2k+1)x) = \frac{\sin^2(nx)}{\sin x}.$$

2. En déduire les solutions dans $]0,\pi[$ de l'équation:

$$\sin x + \sin(3x) - \sin(4x) + \sin(5x) + \sin(7x) = 0.$$

Exercice 26 Calculer les sommes: $(x \in \mathbb{R})$

$$C = \sum_{k=0}^{n} \cos^2(kx)$$
 et $S = \sum_{k=0}^{n} \sin^2(kx)$.

on pourra calculer C + S et C - S.

VI. Une somme double

Exercice 27 Pour tout $n \in \mathbb{N}^*$, on pose: $\omega = e^{\frac{2i\pi}{n}} = \cos\left(\frac{2\pi}{n}\right) + i\sin\left(\frac{2\pi}{n}\right)$.

On veut calculer: $S_n = \sum_{k=0}^{n-1} (1 + \omega^k)^n$.

- 1. Montrer que : $\forall \ell \in [0, n], \omega^l = 1 \iff \ell \in \{0, n\}.$
- 2. En utilisant la formule du binôme, montrer que

$$S_n = \sum_{\ell=0}^n \binom{n}{\ell} \sum_{k=0}^{n-1} (\omega^{\ell})^k$$

3. En déduire la valeur de S_n .