Fonctions – calcul de dérivées

Remarque 1 Une formule est toujours accompagnée d'un DOMAINE DE VALIDITÉ !!!!

I. Opérations algébriques

Proposition 1 Soient f et g deux fonctions dérivables sur un même intervalle I.

- (1) $\bar{f} + g$ est dérivable sur I et (f + g)' = f' + g'.
- (2) $\forall \lambda \in \mathbb{R}, \lambda f$ est dérivable sur I et $(\lambda f)' = \lambda f'$.
- (3) f g est dérivable sur I et (f g)' = f' g + f g'.
- (4) Si g ne s'annule pas sur I alors $\frac{1}{g}$ et $\frac{f}{g}$ sont dérivables sur I et $\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$ et $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.

Dérivées des fonctions usuelles:

Fonction	Ensemble de définition	Ensemble de dérivation	Dérivée
x^n	$\mathbb{R} \text{ si } n \in \mathbb{N}$ $\mathbb{R}^* \text{ si } n < 0$	$\mathbb{R} \text{ si } n \in \mathbb{N}$ $]-\infty, 0[\text{ ou }]0, +\infty[\text{ si } n < 0$	$n x^{n-1}$
\sqrt{x}	$[0,+\infty[$	$]0,+\infty[$	$\frac{1}{2\sqrt{x}}$
$\ln x$	$]0,+\infty[$	$]0,+\infty[$	$\frac{1}{x}$
e^x	\mathbb{R}	\mathbb{R}	e^x
$x^{\alpha} \ (\alpha \in \mathbb{R})$	$]0,+\infty[$	$]0,+\infty[$	$\alpha x^{\alpha-1}$
$\sin x$	\mathbb{R}	\mathbb{R}	$\cos x$
$\cos x$	\mathbb{R}	\mathbb{R}	$-\sin x$
$\tan x$	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

Exemple 1 tan = $\frac{\sin}{\cos}$ est dérivable sur chaque intervalle de $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$ en tant que:

* quotient de fonctions dérivables (dont le dénominateur ne s'annule pas):

$$tan' = \dots$$

* produit de fonctions dérivables: tan' = ...

Conclusion:

Exercice 1 Calculer les dérivées des fonctions suivantes :

1.
$$f(x) = \sqrt{x}(x^2 - x + 1)$$

4.
$$g(x) = \frac{\sqrt{x}}{x^2 + 1}$$

$$6. \ u(x) = x^2 \cos x$$

2.
$$f(x) = 2(x-1)e^x + 1$$

3. $q(x) = 5e^x - x^2$

5.
$$h(x) = \frac{\sqrt{x} - 1}{\sqrt{x} + 1}$$

$$7. \ v(x) = \frac{1}{\sin x}$$

Exercice 2 Calculer les dérivées des fonctions suivantes :

1.
$$f(x) = \sqrt{x} + 2x$$

4.
$$g(x) = \frac{1}{3x^2 - 5x + 1}$$

7.
$$v(x) = \frac{\ln x}{1 + x^2}$$

2.
$$f(x) = x - \ln x - \frac{1}{x}$$

5.
$$h(x) = \frac{x-1}{x^2 + 2x + 3}$$

8.
$$g(x) = \frac{x \ln x}{1+x}$$

3.
$$f(x) = (x-2)e^x + x + 2$$

6.
$$u(x) = \frac{x^2 + x + 1}{x^3 + 2x}$$

II. Composée

Proposition 2 Soient f une fonction dérivable sur un intervalle I, g dérivable sur un intervalle J avec $f(I) \subset J$. Alors $g \circ f$ est dérivable sur I et $(g \circ f)' = g' \circ f \times f'$.

Exemple 2 : composées usuelles.

- (1) Si f est dérivable sur I alors $\forall n \in \mathbb{N}$, f^n est dérivable sur et $(f^n)' = \ldots$
- (2) Si f est dérivable sur I alors sin f et $\cos f$ sont dérivables sur et $(\sin f)' =$ et $(\cos f)' =$
- (3) Si f est dérivable sur I alors e^f est dérivable sur et: $(e^f)' = \dots$
- (4) Si f est dérivable sur I et

 $\forall x \in I$, alors \sqrt{f} est dérivable sur I et $(\sqrt{f})' = \dots$

(5) Si f est dérivable sur I et

 $\forall x \in I$, alors $\ln f$ est dérivable sur I et $(\ln f)' = \dots$

Remarque 2 :ATTENTION!

Ces propositions donnent une condition SUFFISANTE mais pas une condition NÉCESSAIRE!!

Il est possible de faire des opérations sur des fonctions non dérivables et d'obtenir une fonction dérivable.

contre-exemple: $f(x) = \sqrt{x^4} = x^2$ est dérivable en 0! contre-exemple: $g(x) = (\sqrt{x})^2 = x$ est dérivable en 0!

Dérivées des composées usuelles

Fonction	Ensemble de définition	Ensemble de dérivation	Dérivée
$u^n \ (n \in \mathbb{N})$	\mathcal{D}_u	$\mathcal{D}_{u'}$	$n u' u^{n-1}$
$\frac{1}{u}$	$u \neq 0$ sur I	$I \subset \mathcal{D}_{u'}$ et $u \neq 0$ sur I	$-\frac{u'}{u^2}$
\sqrt{u}	$u \ge 0 \text{ sur } I$	$I \subset \mathcal{D}_{u'}$ et $u > 0$ sur I	$\frac{u'}{2\sqrt{u}}$
$\ln u $	$u \neq 0$ sur I	$I \subset \mathcal{D}_{u'}$ et $u \neq 0$ sur I	$\frac{u'}{u}$
e^u	\mathcal{D}_u	$\mathcal{D}_{u'}$	$u'e^u$
$u^{\alpha} \ (\alpha \in \mathbb{R})$	u > 0 sur I	$I \subset \mathcal{D}_{u'}$ et $u > 0$ sur I	$\alpha u' u^{\alpha-1}$
$\sin u$	\mathcal{D}_u	$\mathcal{D}_{u'}$	$u'\cos u$
$\cos u$	\mathcal{D}_u	$\mathcal{D}_{u'}$	$-u'\sin u$
$\tan u$	$u \neq \frac{\pi}{2} + k\pi \text{ sur } I$	$I \subset \mathcal{D}_{u'}$ et $u \neq \frac{\pi}{2} + k\pi$ sur I	$u' \left(1 + \tan^2 u\right) = \frac{u'}{\cos^2 u}$

Exercice 3 Calculer les dérivées des fonctions suivantes :

1.
$$f(x) = 2e^{-x} + 6x^3 - 3e^5$$

6.
$$u(x) = \cos(-2x+4)\sin(-3x+2)$$

2.
$$f(x) = -8xe^{-3x+1}$$

7.
$$v(x) = \sin^2(2x)$$

3.
$$f(x) = x \sin(-3x + 4)$$

$$g(x) = e^{-x} (-\cos x + \sin x + \sin x)$$

11.
$$u(x) = (3x^2 - x) \ln(x - 2)$$

4.
$$q(x) = \sqrt{x-2}(x^2-1)$$

8.
$$g(x) = e^{-x} (-\cos x + \sin x + 1)$$

11.
$$u(x) = (9x - x) \text{ m}(x)$$

4.
$$g(x) = \sqrt{x - 2(x^2 - 1)}$$

$$\sqrt{3-r}$$

12.
$$u(x) = e^{3 \sin(2x)}$$

10. $v(x) = \frac{1}{\sqrt{1-2x}}$

$$5. \ h(x) = 4\cos x + \cos^2 x$$

9.
$$u(x) = \frac{\sqrt{3-x}}{x^3}$$

13.
$$u(x) = \frac{2x^2 + 3x}{\ln x}$$

Exercice 4 Calculer les dérivées des fonctions suivantes :

1.
$$f(x) = \cos(2x+1)$$

7.
$$s(x) = \sqrt{\ln x}$$

12.
$$v(x) = (\sin(x^2 + 5x + 1))^2$$

$$2. \ g(x) = \sin(\sqrt{x})$$

8.
$$f(x) = \frac{\sqrt{x} e^{2x}}{x^2 + 1}$$

$$(\sin x + 1)^3$$

$$3. \ h(x) = e^{\cos x}$$

9.
$$g(x) = \frac{\sin(2x)}{\cos(3x)}$$

13.
$$w(x) = \left(\frac{e^{\sin x} - 1}{x}\right)^3.$$

5.
$$v(x) = (\tan x - 1)^2$$

4. $u(x) = (3x^2 + 4x - 6)^{-4}$

10.
$$h(x) = \ln(\sqrt{x^2 + 3})$$

14.
$$f(x) = \ln|x^2 - 3x + 2|$$

15. $g(x) = xe^{-\frac{3}{|x|}}$

6.
$$w(x) = \sqrt{\frac{1+x}{1-x}}$$

11.
$$u(x) = \sqrt{e^{-2x+1}}$$

16.
$$h(x) = \sqrt{|1 - x^2|}$$

Exercice 5 Calculer les dérivées des fonctions suivantes :

1.
$$g(x) = \frac{1}{x} e^{-\frac{1}{x}}$$
.

4.
$$w(x) = \exp\left(1 - \frac{1}{(\ln|x|)^2 + 1}\right)$$

7.
$$u(x) = (3\cos x - \sin x)^3$$

2.
$$v(x) = \ln(1 + e^x)$$
.

$$5. \ f(x) = \cos(3x) \cos^3 x$$

8.
$$u(x) = \frac{x}{\sqrt{9-x^2}}$$

3.
$$h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

6.
$$f(x) = \frac{\sin x}{1 + \sin x}$$