Étude de fonctions

BCPST 1C - Mme MOREL

Rappels sur les fonctions réelles d'une variable réelle

Vocabulaire 1.1

Définition 1:

- f est une fonction numérique d'une variable réelle s'il existe un sous-ensemble A de $\mathbb R$ tel que à chaque réel $x \in A$ corresponde un unique réel noté f(x).
- A est appelé ensemble de définition de f, et est noté \mathcal{D}_f .

Notation 1:
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 ou $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ ou $f: \mathcal{D}_f$

Remarque 1 ATTENTION A LA REDACTION!

Écrire "la fonction f(x)" est incorrect, on dit la fonction f ou $(x \mapsto f(x))$.

Définition 2: On appelle graphe ou courbe représentative d'une fonction f l'ensemble des points du plan de coordonnées $(x, f(x)), x \in \mathcal{D}_f$; et on le note \mathcal{C}_f .

Exemple 1:

- L'identité sur \mathbb{R} : $Id_{\mathbb{R}}: x \mapsto x$.
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto x^2$ est une fonction numérique et $\mathcal{D}_f = \mathbb{R}$.

Considérons la fonction numérique $\begin{array}{ccc} g:[0,+\infty[& \longrightarrow & \mathbb{R} \\ x & \mapsto & x^2 \end{array}, \, \mathcal{D}_g=[0,+\infty[.$

On remarque que $\mathcal{D}_g = [0, +\infty[\subset \mathcal{D}_f \text{ et } \forall x \in \mathcal{D}_g, \, f(x) = g(x)]$. On dit que g est la restriction de f à $[0, +\infty[]$. Dans la suite du cours, par abus de notation, on notera $f:[0,+\infty[\to\mathbb{R}.$

La détermination de l'ensemble de définition \mathcal{D}_f est la première étape importante dans l'étude d'une fonction

Opérations sur les fonctions réelles

Définition 3 Deux fonctions f et g sont **égales** ssi $\mathcal{D}_f = \mathcal{D}_g$ et $f(x) = g(x) \ \forall x \in \mathcal{D}_f (= \mathcal{D}_g)$.

Définition 4 Soient f et g deux fonctions respectivement définies sur \mathcal{D}_f et \mathcal{D}_q . Soit $\lambda \in \mathbb{R}$. (1) La somme de f et g est la fonction notée f + g définie sur $\mathcal{D}_f \cap \mathcal{D}_g$ par:

$$(f+g)(x) = f(x) + g(x), \forall x \in \mathcal{D}_f \cap \mathcal{D}_g$$
.

(2) Le **produit** de λ par f est la fonction notée λf définie sur \mathcal{D}_f par:

$$(\lambda f)(x) = \lambda f(x), \forall x \in \mathcal{D}_f.$$

(3) Le **produit** de f et g est la fonction notée f g définie sur $\mathcal{D}_f \cap \mathcal{D}_a$ par:

$$(f g)(x) = f(x) g(x), \forall x \in \mathcal{D}_f \cap \mathcal{D}_g.$$

(4) Soit $I = \{x \in \mathcal{D}_g/g(x) \neq 0\}$. Alors le quotient de f par g est la fonction notée $\frac{f}{g}$ définie sur $\mathcal{D}_f \cap I$ par:

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, \forall x \in \mathcal{D}_f \cap I.$$

(5) Soit $I = \{x \in \mathcal{D}_f / f(x) \in \mathcal{D}_q\}$. Alors la composée de f par g est la fonction notée $g \circ f$ définie sur I par:

$$g \circ f(x) = g(f(x)), \forall x \in I$$
.

Diagramme de $g \circ f$:

Remarque 2:

Dans la composée de f par g, f "agit" AVANT g (de droite à gauche dans la notation $g \circ f$).

Exemple 2:

(1) On considère les fonctions:

Les composées $\ln \circ \exp$ et $\exp \circ \ln$ sont-elles bien définies? Si oui:

$$\forall x \in \dots$$
, $\ln \circ \exp(x) = \dots$ et $\exp \circ \ln(x) = \dots$

(2) Soit f une application de E dans F:

$$id_F \circ f = \dots$$
 et $f \circ id_E = \dots$

Remarque 3 ATTENTION: la composition n'est pas commutative! contre-exemple: Soient les applications:

 $\forall x \in \dots, f \circ g(x) = \dots$ MAIS $\forall x \in \dots, g \circ f(x) = \dots$

CAPACITÉ EXIGIBLE 1 :

Afin de déterminer l'ensemble de définition d'une fonction f, penser à bien étudier:

- les quotients (dénominateurs non nuls):
 - \rightarrow équations à résoudre.
- Les composées:
 - \rightarrow composées "usuelles":
 - $* \ln(f(x))$ bien définie si ...
 - * $\sqrt{f(x)}$ bien définie si ...
 - \rightarrow équations et/ou inéquations à résoudre.

Exemple 3:
(1)
$$f(x) = \frac{3x+1}{e^x + e^{-x}}$$
.

 \rightarrow Il s'agit d'un quotient. Que peut-on dire du dénominateur?

Donc:
$$\mathcal{D}_f = \dots$$

(2) $g_1(x) = \ln(x^2 - x + 1)$.

 \rightarrow Il s'agit d'une composée: $g_1(x)$ existe ssi

Donc:
$$\mathcal{D}_{g_1} = \dots$$

(3) $g_2(x) = \sqrt{x^2 + 3x + 2}$.
 \rightarrow A vous:

(4)
$$h(x) = \frac{\ln x - 2}{e^x - e^{-x}}$$
.

 $\begin{array}{l} (4)\ h(x)=\frac{\ln x-2}{e^x-e^{-x}}.\\ \to \mbox{Il y a un quotient , mais attention au ln! } h(x) \mbox{ existe ssi} \end{array}$

Donc $|\mathcal{D}_h|$

Périodicité et symétries

Fonctions périodiques

Définition 5 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction numérique et T > 0. f est T-périodique si: $\forall x \in \mathcal{D}_f$, $x + T \in \mathcal{D}_f$ et f(x + T) = f(x), $\forall x \in \mathcal{D}_f$. On dit que T est une période de f.

POINT METHODE 1:

On restreint l'étude de f sur un intervalle d'amplitude T (en général: $\mathcal{D}_f \cap [0,T]$ ou $\mathcal{D}_f \cap [-\frac{T}{2},\frac{T}{2}]$), puis on récupère toute la courbe (repère orthogonal $(O,\overrightarrow{i},\overrightarrow{j})$) par des translations de vecteurs $kT\overrightarrow{i}$:

CAPACITÉ EXIGIBLE 2 Parmi les fonctions usuelles, dire celles qui sont périodiques, et préciser leur période.

Fonctions paires et impaires

Définition 6 Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction numérique. f est paire si: $\forall x \in \mathcal{D}_f$, $-x \in \mathcal{D}_f$ et f(-x) = f(x), $\forall x \in \mathcal{D}_f$. f est impaire $si: \forall x \in \mathcal{D}_f, -x \in \mathcal{D}_f$ et $f(-x) = -f(x), \forall x \in \mathcal{D}_f$.

Remarque 4 ATTENTION!

Pour prouver la parité/imparité d'une fonction, il ne faut pas oublier de COMMENCER par vérifier que $\forall x \in \mathcal{D}_f, -x \in \mathcal{D}_f,$ i.e que \mathcal{D}_f est symétrique par rapport à 0.

CAPACITÉ EXIGIBLE 3 Parmi les fonctions usuelles, dire celles qui sont paires / impaires.

Lecture graphique 1:

f est paire ssi (O_y) (axe des ordonnées) est axe de symétrie de C_f et f est impaire ssi l'origine du repère O est centre de symétrie de C_f . (repère orthogonal):

POINT METHODE 2: La parité d'une fonction sert à restreindre son intervalle d'étude: IL FAUT Y PENSER!

- Si f est PAIRE, il suffit d'étudier f sur $\mathcal{D}_f \cap [0, +\infty[$, et on récupère toute la courbe par symétrie par rapport à l'axe des ordonnées.
- Si f est IMPAIRE, il suffit d'étudier f sur $\mathcal{D}_f \cap [0, +\infty[$, et on récupère toute la courbe par symétrie de centre O.

Remarque 5 : Une fonction impaire s'annule toujours en 0, quand elle est définie en ce point.

3 (Stricte) monotonie

3.1 Définition

Définition 7 Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction numérique, I un intervalle non vide $de \mathbb{R}$, $I \subset \mathcal{D}_f$.

(1) f est croissante sur I si: $\forall x_1, x_2 \in I$, $x_1 \leqslant x_2 \Rightarrow f(x_1) \leqslant f(x_2)$.

f est strictement croissante sur I si: $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

(2) f est décroissante sur I si: $\forall x_1, x_2 \in I$, $x_1 \leqslant x_2 \Rightarrow f(x_1) \geqslant f(x_2)$.

f est strictement décroissante sur I si: $\forall x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

(3) f est (strictement) monotone sur I si elle est (strictement) croissante ou (strictement) décroissante sur I.

Exemple 4:

- * La fonction carrée est strictement décroissante sur $]-\infty,0]$ et strictement croissante sur $[0,+\infty[$, mais pas monotone sur \mathbb{R} .
- * La fonction partie entière est croissante sur \mathbb{R} , mais pas strictement croissante.

Remarque 6 ATTENTION!! Une fonction est (strictement) monotone sur un INTERVALLE.

Dire que la fonction inverse est décroissante sur \mathbb{R}^* est FAUX!! En effet: $-1 < 2 \not\Rightarrow -1 > \frac{1}{2}$...

Par contre, on peut dire que la fonction inverse est strictement décroissante sur $]-\infty,0[$ et sur $]0,+\infty[$.

Remarque 7:

(1) Une fonction à la fois croissante et décroissante sur un intervalle I est dite **constante**:

$$\boxed{\exists c \in \mathbb{R}/\forall x \in I, f(x) = c}$$

Et non $\forall x \in I$, $\exists c \in \mathbb{R}/f(x) = c \dots$ (pourquoi?)

(2) ATTENTION!!! Une fonction non croissante sur I n'est pas une fonction décroissante sur I! Contre-exemple: La fonction carrée sur \mathbb{R} .

3.2 Propriétés

Remarque 8 : Étude de la réciproque.

Supposons f croissante sur un intervalle I. Pour tous x et y deux éléments de I, si $f(x) \leq f(y)$, a-t-on $x \leq y$? Pensez à la fonction partie entière...

Et maintenant, si on suppose f strictement croissante sur I?

Conclusion:

si f STRICTEMENT croissante sur un intervalle $I: \forall x, y \in I, x \leqslant y \iff f(x) \leqslant f(y),$ si f STRICTEMENT décroissante sur un intervalle $I: \forall x, y \in I, x \leqslant y \iff f(x) \geqslant f(y).$

POINT METHODE 3 : Cette propriété des fonctions strictement monotones va nous permettre de résoudre des inéquations.

Proposition 1:

- (1) La somme de deux fonctions croissantes (resp. décroissantes) est croissante (resp. décroissante).
- (2) Soient f une fonction et $\lambda \in \mathbb{R}$.
 - $Si \ \lambda > 0 \ et \ f \ croissante \ (resp. \ décroissante) \ alors \ \lambda \ f \ est \ croissante \ (resp. \ décroissante).$
 - Si $\lambda < 0$ et f croissante (resp. décroissante) alors λ f est décroissante (resp. croissante).
- (3) La composée de deux fonctions croissantes est croissante.
- (4) La composée d'une fonction croissante et d'une fonction décroissante est décroissante.
- (5) La composée de deux fonctions décroissantes est croissante.

Preuve:

Exemple 5 Pour tout $\alpha \in \mathbb{R}$, étudier la monotonie des fonctions $(x \mapsto e^{\alpha \ln(x)})$ sur ...

Lien avec la dérivée (des fonctions dérivables) 3.3

POINT METHODE 4:

SI la fonction est dérivable sur un intervalle I, le SIGNE de la dérivée donne la MONOTONIE de la fonction sur I: soit f une fonction dérivable sur un intervalle I.

- (1) Si $f' \ge 0$ sur I alors f est croissante sur ISi f'(x) > 0, $\forall x \in I$, alors f est strictement croissante sur I (2) Si $f' \leq 0$ sur I alors f est décroissante sur I. Si f'(x) < 0, $\forall x \in I$, alors f est strictement décroissante sur I
- (3) Si f'(x) = 0, $\forall x \in I$ alors f est constante sur I.

Remarque 9 Pour l'instant, on ne parle pas de la réciproque. Cependant, ATTENTION AU CAS STRICT!!! Si f'(x) > 0, $\forall x \in I$, alors f est strictement croissante sur I, mais la RÉCIPROQUE EST FAUSSE! contre-exemple: $(x \mapsto x^3)$ sur \mathbb{R} .

On admet aussi les résultats suivants :

- 1. si $f' \ge 0$ (resp. $f' \le 0$) sur I et ne s'annule qu'en un nombre fini de points, alors f est strictement croissante (resp. décroissante) sur I.
- 2. Si f est continue sur [a, b] et dérivable sur [a, b], le signe de f' sur [a, b] donne la monotonie de f sur [a, b].

Exemple 6 La fonction racine est continue sur $[0, +\infty[$, dérivable sur $]0, +\infty[$, de dérivée $f'(x) = \frac{1}{2\sqrt{x}} > 0, \forall x > 0.$ Donc la fonction racine est (strictement) croissante sur $[0, +\infty[$.

3. Il est très important de se trouver sur un INTERVALLE...

Rappel 1 On rappelle les formules de dérivations :

Soient f et g deux fonctions dérivables sur un même intervalle I.

- (1) f + g est dérivable sur I et (f + g)' = f' + g'.
- (2) $\forall \lambda \in \mathbb{R}, \lambda f$ est dérivable sur I et $(\lambda f)' = \lambda f'$.
- (3) f g est dérivable sur I et (f g)' = f' g + f g'.
- (4) Si g ne s'annule pas sur I alors $\frac{1}{g}$ et $\frac{f}{g}$ sont dérivables sur I et $\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$ et $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.

Dérivées des fonctions usuelles:

Fonction	Ensemble de définition	Ensemble de dérivation	Dérivée
x^n	\mathbb{R} si $n \in \mathbb{N}$ \mathbb{R}^* si $n < 0$	$\mathbb{R} \text{ si } n \in \mathbb{N} \\]-\infty, 0[\text{ ou }]0, +\infty[\text{ si } n < 0$	$n x^{n-1}$
\sqrt{x}	$[0,+\infty[$	$]0,+\infty[$	$\frac{1}{2\sqrt{x}}$
$\ln x$	$]0,+\infty[$	$]0,+\infty[$	$\frac{1}{x}$
e^x	\mathbb{R}	\mathbb{R}	e^x
$x^{\alpha} \ (\alpha \in \mathbb{R})$	$]0,+\infty[$	$]0,+\infty[$	$\alpha x^{\alpha-1}$
$\sin x$	\mathbb{R}	\mathbb{R}	$\cos x$
$\cos x$	\mathbb{R}	$\mathbb R$	$-\sin x$
$\tan x$	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$	$\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$

Soient f une fonction dérivable sur un intervalle I, g dérivable sur un intervalle J avec $f(I) \subset J$. Alors $g \circ f$ est dérivable sur I et $(g \circ f)' = g' \circ f \times f'$. **Dérivées des composées usuelles:**

Fonction	Ensemble de définition	Ensemble de dérivation	Dérivée
$u^n \ (n \in \mathbb{N})$	\mathcal{D}_u	$\mathcal{D}_{u'}$	$n u' u^{n-1}$
$\frac{1}{u}$	$u \neq 0$ sur I	$I \subset \mathcal{D}_{u'}$ et $u \neq 0$ sur I	$-\frac{u'}{u^2}$
\sqrt{u}	$u \ge 0 \text{ sur } I$	$I \subset \mathcal{D}_{u'}$ et $u > 0$ sur I	$\frac{u'}{2\sqrt{u}}$
$\ln u $	$u \neq 0$ sur I	$I \subset \mathcal{D}_{u'}$ et $u \neq 0$ sur I	$\frac{u'}{u}$
e^u	\mathcal{D}_u	$\mathcal{D}_{u'}$	$u'e^u$
$u^{\alpha} \ (\alpha \in \mathbb{R})$	u > 0 sur I	$I \subset \mathcal{D}_{u'}$ et $u > 0$ sur I	$\alpha u' u^{\alpha-1}$
$\sin u$	\mathcal{D}_u	$\mathcal{D}_{u'}$	$u'\cos u$
$\cos u$	\mathcal{D}_u	$\mathcal{D}_{u'}$	$-u'\sin u$
$\tan u$	$u \neq \frac{\pi}{2} + k\pi \text{ sur } I$	$I \subset \mathcal{D}_{u'} \text{ et } u \neq \frac{\pi}{2} + k\pi \text{ sur } I$	$u' \left(1 + \tan^2 u\right) = \frac{u'}{\cos^2 u}$