
Vocabulaire des ensembles

BCPST 1C – Mme MOREL

Introduction.
Dans tout ce chapitre, E désigne un ensemble.
Rappel:

N désigne l’ensemble des entiers naturels: 0, 1, 2, 3, . . .
Z désigne l’ensemble des entiers relatifs: entiers naturels et leurs opposés.
Q désigne l’ensemble des rationnels: de la forme p

q , avec p ∈ Z et q ∈ N∗.
R désigne l’ensemble des réels.
C désigne l’ensemble des complexes.

1 Appartenance et inclusion

1.1 Appartenance
Notation 1 Si x est un élément de E, on note x ∈ E, qui se dit x appartient à E.
Si x n’appartient pas à E, on note x 6∈ E.

Exemple 1 :

• E = {1, 2, 3}, alors 1 ∈ E, 2 ∈ E, 3 ∈ E, mais 6 6∈ E.

• 7 ∈ [7,+∞[ mais 7 6∈ ]7,+∞[.

Remarque 1 :
Il y a un ensemble qui ne contient aucun élément, c’est l’ensemble vide, noté ∅.
Tout ensemble contenant un seul élément est un singleton.

1.2 Inclusion
Définition 1 Soient A et E deux ensembles.
On dit que A est inclus dans E, ou A est un sous-ensemble de E, ou encore A est une partie de E, et on note A ⊂ E
si tout élément de A appartient à E:

∀x ∈ A , x ∈ E .

On note P(E) l’ensemble des parties de E.

Exemple 2 :

• {1, 2, 3} ⊂ N ⊂ R.

• [7,+∞[⊂ R et plus généralement, tous les intervalles de R sont des parties de R: par exemple, si a, b ∈ R,

[a, b] = {x ∈ R/a 6 x 6 b} ]a,+∞[= {x ∈ R/x > a} etc . . .

Notations particulières:

• Intervalles de R: R+ = [0,+∞[ R∗+ =]0,+∞[ R− =]−∞, 0] R∗− =]−∞, 0[ .
• Notation z A: si A est une partie de C et z ∈ C, on pose: zA = {z a/a ∈ A}.

Exemple: πZ = {πz/z ∈ Z} .

• Sous-ensembles de N: si n,m ∈ N

Jn,mK = {k ∈ N | n 6 k 6 m} = {n, n+ 1, . . . ,m} .

Exemple 3 description des intervalles de R:
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Définition 2 On appelle intervalle toute partie de R de la forme:

(1) [a, b] = {x ∈ R/a 6 x 6 b} (2) [a,+∞[= {x ∈ R/x > a}
]a, b] = {x ∈ R/a < x 6 b} ]a,+∞[= {x ∈ R/x > a}
[a, b[= {x ∈ R/a 6 x < b} ]−∞, b] = {x ∈ R/x 6 b}
]a, b[= {x ∈ R/a < x < b} ]−∞, b[= {x ∈ R/x < b}

]−∞,+∞[= R !

Remarque 2 Intuitivement, un intervalle est une partie de R continue, au sens où on peut la tracer sans lever le stylo.

Exemple 4 :
(1) [a, a] = {a}: singleton.
(2) ]a, a[= ∅ donc l’ensemble vide est un intervalle!
(3) Les intervalles de la forme [a, b] sont appelés segments.

Remarque 3 A retenir: ∀a ∈ R, ∀ε > 0,

|x− a| < ε ⇐⇒ −ε < x− a < ε ⇐⇒ a− ε < x < a+ ε ⇐⇒ x ∈]a− ε, a+ ε[

Exemple 5 : Images directe et réciproque.

(1) Image directe

Définition 3 Soit f : R→ R une fonction.
Pour toute partie A de Df , on appelle image directe de A par f l’ensemble des images des éléments de A, noté f(A):

f(A) = {f(x), x ∈ A} = {y ∈ R/∃x ∈ A, f(x) = y} .

Remarque 4 En d’autres termes: y ∈ f(A) ⇐⇒ ∃x ∈ A, f(x) = y

POINT METHODE 1 : Détermination de f(A) graphiquement :
1. On trace A sur l’axe des abscisses.
2. On sélectionne la ou les portion(s) de la courbe dont les abscisses sont dans A. (droites verticales).
3. On "projette” sur l’axe des ordonnées la ou les portion(s) de la courbe: c’est f(A)!

Exercice 1 :
(1) Fonction carrée: déterminer f([1, 2]), f([−1, 1]), f([−1, 0]), f(R).
(2) exp(R).
(3) tan(]− π

2
,
π

2
[), sin([−π

2
,
π

2
]) et cos([0, π]).

(4) ln(]1,+∞[).

Proposition 1 Soient une fonction f : R→ R et A,B deux parties de Df telles que A ⊂ B. Alors f(A) ⊂ f(B).

Preuve:
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(2) Image réciproque

Définition 4 Soit f une fonction de R dans R.
Pour toute partie B de R, on appelle image réciproque de B par f l’ensemble des antécédants des éléments de B, noté
f̌(B):

f̌(B) = {x ∈ E/f(x) ∈ B} .

Remarque 5 : En d’autres termes: x ∈ f̌(B) ⇐⇒ f(x) ∈ B

POINT METHODE 2 : Détermination de f̌(B) graphiquement :
1. On trace B sur l’axe des ordonnées.
2. On sélectionne la ou les portion(s) de la courbe dont les ordonnées sont dans B. (droites horizontales).
3. On "projette” sur l’axe des abscisses la ou les portion(s) de la courbe: c’est f̌(B)!

Exercice 2 :
(1) Fonction carrée: déterminer f̌([−2,−1]), f̌([−2, 2]), f̌([0, 2]), f̌(R−) et f̌(R+).
(2) ˇexp(]−∞, 0]).
(3) ˇsin({0}) et ˇcos({1}).

Proposition 2 Soient une fonction f : R→ R et A,B deux parties de R telles que A ⊂ B. Alors f̌(A) ⊂ f̌(B).

Preuve:

Remarque 6 :
(1) Soit un ensemble E: ∅ ⊂ E et E ⊂ E.
En d’autres termes: l’ensemble vide et E sont toujours deux parties de E.

(2) si A ⊂ B et B ⊂ E alors A ⊂ E.

(3) A = B ⇐⇒ A ⊂ B et B ⊂ A (preuve de l’égalité entre deux ensembles par double inclusion)

(4) Si A n’est pas inclus dans E, on note: A 6⊂ E. Ce qui signifie: ∃ a ∈ A , a 6∈ E .
En effet : non(A ⊂ E) = A 6⊂ E, et la négation donne : non(∀a ∈ A , a ∈ E) = ∃ a ∈ A , a 6∈ E .

1.3 Cas particulier des parties de R: bornes supérieure et inférieure.
1.3.1 Majorants et minorants

Définition 5 Soit A une partie de R.
(1) Majorants:

∗ On dit que le réel M est un majorant de A (ou que A est majorée par M) si: ∀a ∈ A, a 6M .
∗ On dit que A est majorée s’il existe un majorant de A: ∃M ∈ R, ∀a ∈ A, a 6M .

(2) Minorants:
∗ On dit que le réel m est un minorant de A (ou que A est minorée par m) si: ∀a ∈ A, a > m.
∗ On dit que A est minorée s’il existe un minorant de A: ∃m ∈ R, ∀a ∈ A, a > m.

(3) On dit que A est bornée si elle est à la fois minorée et majorée: ∃m, M ∈ R, ∀a ∈ A, m 6 a 6M .
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Remarque 7 Bien noter la place des quantificateurs.

Remarque 8 De façon équivalente, on peut utiliser la valeur absolue pour exprimer que A est bornée:
∃K ∈ R+, ∀a ∈ A, |a| 6 K.
Preuve:

Exemple 6 :
(1) ]0, 1[ est borné: majoré par 1 et minoré par 0.
(2) ]−∞, 3] est non minoré et majoré par 3.

Remarque 9 :
(1) Il n’y a pas toujours existence d’un minorant / majorant!
(2) Un majorant / minorant n’appartient pas forcément à A!

Exemple 7 : cas des fonctions numériques. La définition 4 devient:
Soit une fonction f : R→ R. (avec A = {f(x), x ∈ Df})
(1) M ∈ R. M est un majorant de f si: ∀x ∈ Df , f(x) 6M .
(2) m ∈ R. m est un minorant de f si: ∀x ∈ Df , f(x) > m.
(3) f est bornée si f admet à la fois un minorant et un majorant:

∃m,M ∈ R/∀x ∈ Df , m 6 f(x) 6M ou ∃K > 0 , ∀x ∈ Df , |f(x)| 6 K .
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∗
(
x 7→ 1

x

)
n’est ni majorée ni minorée sur R∗, mais minorée (par 0) sur ]0,+∞[.

∗ (x 7→ x2) est minorée par 0 (f(0) = 0), mais non majorée sur R: ∀x ∈ R, x2 > 0 = 02.

∗ exp est minorée par 0, non majorée sur R: ∀x ∈ R, ex > 0.

∗ sin est bornée sur R: ∀x ∈ R, −1 6 sinx 6 1.

ATTENTION!! Minorant et majorant sont des réels indépendants de x! (on veillera donc à la place des quantificateurs)

1.3.2 Maximum et minimum

Définition 6 Soit A une partie de R.
(1) Si M est un majorant de A qui appartient à A alors M est unique. On dit que M est le maximum de A que l’on

note maxA
(2) Si m est un minorant de A qui appartient à A alors m est unique. On dit que m est le minimum de A que l’on

note minA
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Preuve:

Exemple 8 : cas des fonctions numériques. La définition 5 devient:
Soit une fonction f : R→ R. (avec A = {f(x), x ∈ Df})
(1) On dit que f admet un maximum en x0 ∈ Df (ou x0 est un point de maximum de f) si: ∀x ∈ Df , f(x) 6 f(x0).
(2) On dit que f admet un minimum en x0 ∈ Df (ou x0 est un point de minimum de f) si: ∀x ∈ Df , f(x) > f(x0).
Vocabulaire: si un majorant (minorant) est un maximum (minimum), on dit qu’il est atteint: ∃x0 ∈ Df/M = f(x0).
∗ La fonction carrée a un minimum (minorant atteint) en 0: ∀x ∈ R, x2 > 0 = 02.

∗ La fonction exponentielle est minorée en 0 (non atteint): ∀x ∈ R, ex > 0.

∗ La fonction sinus atteint une infinité de fois ses majorant (1 = sin(
π

2
+ 2kπ), k ∈ Z) et minorant (−1 = sin(

3π

2
+ 2kπ),

k ∈ Z).

Exemple 9 :
(1) ]−∞, 3] admet 3 pour maximum. On note que l’ensemble des majorants de ]−∞, 3] est [3,+∞[ et que 3 est le plus

petit des majorants.
(2) [0, 1[ admet 0 pour minimum. On note que l’ensemble des minorants de [0, 1[ est ]−∞, 0] et que 0 est le plus grand

des minorants.
Par contre 1 n’est pas le maximum de [0, 1[ car 1 6∈ [0, 1[. On note quand-même que l’ensemble des majorants de [0, 1[ est
[1,+∞[ et que 1 est le plus petit des majorants: quel nom lui donner?
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1.3.3 Bornes supérieure et inférieure

Définition 7 Soit A une partie de R.
(1) Si l’ensemble des majorants de A admet un plus petit élément on l’appelle borne supérieure de A et on le note

supA

(2) Si l’ensemble des minorants de A admet un plus grand élément on l’appelle borne inférieure de A et on le note
inf A

Exemple 10 sup[0, 1[= 1, inf]0, 1[= 0 et sup]−∞, 3] = max]−∞, 3] = 3.

Remarque 10 En d’autres termes:
(1) M = supA ssi M majore A et est le plus petit des majorants. Traduction mathématique:

M = supA ⇐⇒ ∀a ∈ A , a 6M︸ ︷︷ ︸
M majore A

, et ∀ε > 0 , ∃a ∈ A , M − ε < a︸ ︷︷ ︸
plus petit des majorants

Preuve:
⇒ Supposons que M = supA.

Alors M majore A, donc: ∀a ∈ A , a 6M .
De plus, M est le plus petit des majorants donc ∀ε > 0, M − ε ne majore pas A car M − ε < M . Donc il existe a ∈ A tel
que a > M − ε.
⇐ Supposons que ∀a ∈ A , a 6M et que ∀ε > 0 , ∃a ∈ A , M − ε < a.

Puisque ∀a ∈ A , a 6M , cela signifie que M est un majorant de A.
Par ailleurs, si M n’était pas le plus petit des majorants, alors il existe M ′ < M qui majore A. Posons ε = M −M ′ > 0.
Donc ∀a ∈ A, a 6M ′ = M − ε: ABSURDE.
Conclusion: M est bien le plus petit des majorants et M = supA.

(2) De même: m = inf A ssi m minore A et est le plus grand des minorants. Traduction mathématique:

m = inf A ⇐⇒ ∀a ∈ A , a > m︸ ︷︷ ︸
m minore A

, et ∀ε > 0 , ∃a ∈ A , m+ ε > a︸ ︷︷ ︸
plus grand des minorants

Et l’existence?

Théorème 1 (admis):
Toute partie non vide et majorée (resp. minorée) de R admet une borne supérieure (resp. inférieure).

2 Opérations sur P(E)

2.1 Intersection
Définition 8 ∀A,B ∈ P(E), l’intersection entre A et B est définie par: A ∩B = {x ∈ E/x ∈ A ET x ∈ B}

Remarque 11 De la même façon, pour toute famille de parties de E, (Ak)k∈J1,nK, l’intersection des n ensembles A1∩. . .∩An

s’écrit aussi
n⋂

k=1

Ak: c’est l’ensemble des éléments de E qui appartiennent à tous les ensembles Ak:

x ∈
n⋂

k=1

Ak ⇐⇒ ∀k ∈ J1, nK , x ∈ Ak

Proposition 3 (ADMISE):
(1) A ∩B = B ∩A (commutatif). (2) (A ∩B) ∩ C = A ∩ (B ∩ C) (associatif).
(3) A ∩B ⊂ A et A ∩B ⊂ B.

Définition 9 Soient A,B ∈ P(E). A et B sont disjoints si A ∩B = ∅ (aucun élément en commun).

Exemple 11 :
(1) A ∩ ∅ = ∅.
(2) A = {2n, n ∈ N} et B = {2n+ 1, n ∈ N} sont disjoints: un même entier naturel ne peut être à la fois pair et impair.
(3) ]2, 4[ et [4,+∞[ sont disjoints (importance du sens des crochets).

Remarque 12 Si A ⊂ B alors A ∩B = A.
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2.2 Réunion
Définition 10 ∀A,B ∈ P(E), on définit leur union par: A ∪B = {x ∈ E/x ∈ A OU x ∈ B}

Remarque 13 :
(1) x ∈ A ∪B si x appartient au moins à l’un des deux ensembles (ou inclusif ).
Par contre, si A et B sont disjoints, alors le OU de A ∪B est exclusif : un élément de A ∪B est soit dans A soit dans B.

(2) De la même façon, pour toute famille de parties de E, (Ai)i∈J1,nK, l’union des n ensembles A1, . . . , An s’écrit aussi
n⋃

i=1

Ai,

c’est l’ensemble des éléments de E qui appartiennent au moins à l’un des ensembles Ai:

x ∈
n⋃

i=1

Ai ⇐⇒ ∃i ∈ {1, . . . , n}/x ∈ Ai

Exemple 12 :
(1) A ∪ ∅ = A; R∗ =]−∞, 0[∪]0,+∞[.
(2) A = {2n, n ∈ N} est l’ensemble des entiers pairs. A ⊂ N.
B = {2n+ 1, n ∈ N} est l’ensemble des entiers impairs. B ⊂ N.
On a A ∪B = N.

(3) Considérons E = [0, 10[ et ∀i ∈ J0, 9K, Ai = [i, i+ 1[. On a
9⋃

i=0

Ai = E.

Remarque 14 Si A ⊂ B alors A ∪B = B.

Proposition 4 (ADMISE):
(1) A ∪B = B ∪A (commutatif). (2) (A ∪B) ∪ C = A ∪ (B ∪ C) (associatif).
(3) A ⊂ A ∪B et B ⊂ A ∪B. (4) Si A ⊂ C et B ⊂ C alors A ∪B ⊂ C.

Proposition 5 (ADMISE):
(1) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).
(2) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

Remarque 15 (généralisation à un nombre fini d’ensembles):
Pour toutes parties A, B1, . . . , Bn (n ∈ N∗) d’un ensemble E, on a:

A ∩

(
n⋃

i=1

Bi

)
=

n⋃
i=1

(A ∩Bi) et A ∪

(
n⋂

i=1

Bi

)
=

n⋂
i=1

(A ∪Bi)

2.3 Complémentaire

Définition 11 ∀A ∈ P(E), on définit son complémentaire, noté E \A ou A, par: A = {x ∈ E/x 6∈ A}

Exemple 13 :
(1) Soit un ensemble E: E = ∅ et ∅ = E.
(2) R\]−∞, 0] =]0,+∞[.

Proposition 6 :
(1) A = A
(2) Lois de Morgan: A ∩B = A ∪B et A ∪B = A ∩B.

Preuve:
(1) Par définition, A = {x ∈ E/x 6∈ A} = {x ∈ E/x ∈ A} = A.
(2)

x ∈ A ∩B ⇐⇒ x 6∈ A ∩B ⇐⇒ non(x ∈ A ∩B) ⇐⇒ . . .

Conclusion: A ∩B = A ∪B.
∗ En appliquant la formule précédente à A et B, il vient: A ∩B = A ∪B = A ∪B.
Donc A ∪B = A ∩B.
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Remarque 16 (généralisation à un nombre fini d’ensembles):
Pour toutes parties A1, . . . , An (n ∈ N∗) d’un ensemble E, on a:

n⋂
i=1

Ai =

n⋃
i=1

Ai et
n⋃

i=1

Ai =

n⋂
i=1

Ai

2.4 Partition, système complet
Définition 12 Soient A1, . . . , An une famille de parties de E. (Ai)i∈[|1,n|] forme une partition de E si:

• ∀i ∈ I , Ai 6= ∅
• ∀i 6= j , Ai ∩Aj = ∅ (deux à deux disjoints)
•
⋃
i∈I

Ai = E

CAPACITÉ EXIGIBLE 1 : savoir former une partition, ou un système complet, d’un ensemble.
(1) A = {2n, n ∈ N} et B = {2n+ 1, n ∈ N} forment une partition de N: un entier naturel est soit pair soit impair.
(2) Soit Ai = [i, i+ 1[, i ∈ J0, 9K.

La famille (Ai)i∈[|0,9|] forme une partition de [0, 10[.
(3) Considérons A =]−∞, 0] et B = [0,+∞[.
A ∪B = R, mais A et B ne forment pas une partition de R car A ∩B = {0} 6= ∅!
Par contre, ]−∞, 0[ et [0,+∞[ forment une partition de R . . .
(4) Situations probabilistes:

• On lance un dé à six faces et on note E =“on obtient un numéro pair”= {2, 4, 6}.
Les singletons {2}, {4} et {6} forment une partition de E.

• On lance deux fois de suite une pièce de monnaie et on note E =“on obtient une seule fois face”.
Les ensembles {(P, F )} (pile puis face) et {(F, P )} (face puis pile) forment une partition de E.

Définition 13 Soit E un ensemble et A1, . . . , An une famille de parties de E.
(Ai)i∈J1,nK est un système complet de E si les parties sont deux à deux disjointes, de réunion égale à E:{

• ∀i 6= j , Ai ∩Aj = ∅ (deux à deux disjoints)
•
⋃
i∈I

Ai = E

Remarque 17 La différence entre partition et système complet de E est que pour une partition, toutes les parties doivent
être non vides, ce qui n’est pas le cas d’un système complet.

POINT METHODE 3 : Penser au complémentaire pour former un système complet ou une partition:
• A et E \A étant toujours disjoints, ils forment TOUJOURS un système complet de E.
• Attention, pour une partition: ∀A ∈ P(E) tel que A non vide et A 6= E, A et E \A forment une partition de E.

2.5 Différence
Définition 14 Soient A et B deux parties de E. On définit leur différence par: A \B = {x ∈ E/x ∈ A et x 6∈ B}

Exemple 14 R \ [−1, 1] =]−∞,−1[∪]1,+∞[.

Remarque 18 On a A \B = A ∩B
d’où l’écriture: A = E ∩A = E \A...

3 Produit cartésien
Définition 15 :
Soient E et F deux ensembles. On définit leur produit cartésien par: E × F = {(x, y)/x ∈ E et y ∈ F}
Les éléments de E × F sont appelés couples ou 2-uplets.
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Exemple 15 Le plan R2 = R× R.
Un élément de R×R est un couple (de coordonnées) (x0, y0) où x0 ∈ R (est appelé abscisse) et y0 ∈ R (est appelé ordonnée).
On peut les tracer dans un repère:

Donc, par exemple: (1, 2) ∈ R2, (−5, 7) ∈ R2. On remarque que (1, 2) 6= (2, 1), donc l’ordre est important!

Exemple 16 :
(1) (−2,

√
5) ∈ Z× R car −2 ∈ Z et

√
5 ∈ R. Mais (

√
5,−2) 6∈ Z× R car

√
5 6∈ Z.

(2) E = {1, 2} et F = {0, 1, 2}. Déterminons E × F .
Tableau à deux entrées:

E \ F 0 1 2
1 (1, 0) (1, 1) (1, 2)
2 (2, 0) (2, 1) (2, 2)

Donc E × F = {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.
On remarque que (1, 0) ∈ E × F mais (0, 1) 6∈ E × F .

Remarque 19 De la même façon, on peut définir le produit cartésien de n ensembles E1, E2, . . . , En par:

E1 × . . .× En est l’ensemble des n-uplets (x1, . . . , xn) où xi ∈ Ei, ∀i ∈ J1, nK.

Si Ei = E ∀i ∈ J1, nK, on note E1 × . . .× En = En = {(x1, . . . , xn)/∀k ∈ J1, nKxk ∈ E}.
Un élément (x1, . . . , xp) de Ep sera appelé une p-liste d’éléments de E (au lieu de p-uplet).

Exemple 17 L’espace R3 = R× R× R. On ajoute une coordonnée à R2: la côte.

Un 3-uplet de R3 a donc 3 coordonnées: (x0, y0, z0).
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