Vocabulaire des ensembles

BCPST 1C — Mme MOREL

Introduction.

Dans tout ce chapitre, E' désigne un ensemble.

Rappel:
N désigne ’ensemble des entiers naturels: 0,1,2,3, ...
7 désigne ’ensemble des entiers relatifs: entiers naturels et leurs opposés.
Q désigne ’ensemble des rationnels: de la forme g, avec p € Z et ¢ € N*.
R désigne ’ensemble des réels.
C désigne I'ensemble des complexes.

1 Appartenance et inclusion

1.1 Appartenance

Notation 1 Si z est un élément de F, on note x € E, qui se dit z appartient a F.
Si x n’appartient pas & F, on note x ¢ E.

Exemple 1 :
e £E={1,2,3},alors 1€ E,2€ E,3€ E, mais 6 ¢ E.

e 7€ [7,+00[ mais 7 €]7,+0o0l.

Remarque 1 :
Il y a un ensemble qui ne contient aucun élément, c’est ’ensemble vide, noté (.
Tout ensemble contenant un seul élément est un singleton.

1.2 Inclusion

Définition 1 Soient A et E deux ensembles.
On dit que A est inclus dans F, ou A est un sous-ensemble de E, ou encore A est une partie de E, et on note AC E
si tout élément de A appartient ¢ E:

Vie A,z € E.

On note P(E) l’ensemble des parties de E.
Exemple 2 :
e {1,2,3} CNCR.
e [7,+00[C R et plus généralement, tous les intervalles de R sont des parties de R: par exemple, si a,b € R,
[a,0] ={x e R/a <z <b} Ja,+o0[={zeR/z>a} etc...
Notations particuliéres:
e Intervalles de R: Ry = [0,4+00[ R} =]0,+00[ R_ =] —00,0] R* =]—o00,0].

e Notation z A: si A est une partie de C et z € C, on pose: zA = {za/a € A}.
Ezemple: nZ ={rz/z € 7L} .

e Sous-ensembles de N: sin,m € N

[n,ml]={keN|n<k<m}={nn+1,....,m}.

Exemple 3 description des intervalles de R:



Définition 2 On appelle intervalle toute partie de R de la forme:

(1) [a.b] = {e € Rla<e <b}  (2) [a,+o0[= {x € R/ > a}

la,b] = {x e R/fa <z < b} la,+oo[={z € R/x > a}

[a,b]={x € R/a < z < b} ] —00,b] = {zr e R/z < b}

la,b[={z € R/a < x < b} ] —o00,b[={z € R/z < b}
] — 00, +o0[=R!

Remarque 2 Intuitivement, un intervalle est une partie de R continue, au sens ol on peut la tracer sans lever le stylo.

Exemple 4 :
(1) [a,a] = {a}: singleton.
(2) ]a,a[= 0 donc I'ensemble vide est un intervalle!
(3) Les intervalles de la forme [a, b] sont appelés segments.

Remarque 3 A retenir: Va € R, Ve > 0,

’|x—a|<5 = —e<zr—a<e <<= a—e<zr<ate = xG]a—s,aJre[‘

Exemple 5 : Images directe et réciproque.

(1) Image directe

Définition 8 Soit f : R — R une fonction.
Pour toute partie A de Dy, on appelle image directe de A par f l’ensemble des images des éléments de A, noté f(A):

f(A) ={f(x),ze A} ={y eR/Ir € A, f(z) =y}.

Remarque 4 En d’autres termes: ’y € f(A) < Jx e A f(x)= y‘

POINT METHODE 1 : Détermination de f(A) graphiquement :
1. On trace A sur I'axe des abscisses.
2. On sélectionne la ou les portion(s) de la courbe dont les abscisses sont dans A. (droites verticales).
3. On "projette” sur 'axe des ordonnées la ou les portion(s) de la courbe: c’est f(A)!

Exercice 1 :
(1) Fonction carrée: déterminer f([1,2]), f([-1,1]), f([-1,0]), f(R).
(2) expl).
(3) tan(] — 575
(4) n(]1, o))

Proposition 1 Soient une fonction f : R — R et A, B deuz parties de Dy telles que A C B. Alors f(A) C f(B).

), sin([—g g}) et cos([0, ).

Preuve:



(2) Image réciproque

Définition 4 Soit f une fonction de R dans R.
Pour toute partie B de R, on appelle image réciproque de B par f Uensemble des antécédants des éléments de B, noté
f(B):

f(B) ={z € E/f(x) € B}.

Remarque 5 : En d’autres termes: |z € f(B) < f(z) € B

POINT METHODE 2 : Détermination de f(B) graphiquement :
1. On trace B sur I’axe des ordonnées.
2. On sélectionne la ou les portion(s) de la courbe dont les ordonnées sont dans B. (droites horizontales).
3. On "projette” sur I’axe des abscisses la ou les portion(s) de la courbe: c’est f(B)!

Exercice 2 :

(1) Fonction carrée: déterminer f([—2,—1]), f([~2,2]), £([0,2]), f(R_) et f(Ry).
(2) exp(] — 00,0)).
(3) sin({0}) et cos({1}).

Proposition 2 Soient une fonction f : R — R et A, B deux parties de R telles que A C B. Alors f(A) C f(B).

Preuve:

Remarque 6 :
(1) Soit un ensemble E: ) C F et E C E.
En d’autres termes: ’ensemble vide et E sont toujours deux parties de FE.

(2)siAC Bet BC Ealors ACE.
(3) A=B < A C B et B C A (preuve de I'égalité entre deux ensembles par double inclusion)

(4) Si A n’est pas inclus dans E, on note: A ¢ E. Ce qui signifie: 3Ja € A, a ¢ E.
En effet : non(A C E) = A ¢ E, et la négation donne : non(NVa € A, a € E)=3a€ A,a ¢ E.

1.3 Cas particulier des parties de R: bornes supérieure et inférieure.
1.3.1 Majorants et minorants

Définition 5 Soit A une partie de R.
(1) Majorants:
x On dit que le réel M est un majorant de A (ou que A est majorée par M) si: Va € A, a < M.
x On dit que A est majorée s’il existe un majorant de A: AM € R, Va € A, a < M.
(2) Minorants:
x On dit que le réel m est un minorant de A (ou que A est minorée par m) si: Va € A, a > m.
x On dit que A est minorée s’il existe un minorant de A: 3m € R, Va € A, a > m.
(8) On dit que A est bornée si elle est a la fois minorée et majorée: Im, M € R,Va e A, m<a < M.



Remarque 7 Bien noter la place des quantificateurs.

Remarque 8 De fagon équivalente, on peut utiliser la valeur absolue pour exprimer que A est bornée:
JK eRy,Vae A, |a| < K.
Preuve:

Exemple 6 :
(1) ]0,1[ est borné: majoré par 1 et minoré par 0.
(2) ] — o0, 3] est non minoré et majoré par 3.

Remarque 9 :
(1) I n’y a pas toujours existence d’un minorant / majorant!
(2) Un majorant / minorant n’appartient pas forcément a A!

Exemple 7 : cas des fonctions numériques. La définition 4 devient:
Soit une fonction f: R — R. (avec A = {f(x),z € Dy})

(1) M € R. M est un majorant de f si: Vo € Dy, f(z) < M.

(2) m € R. m est un minorant de f si: Vo € Dy, f(z) > m.

(3) f est bornée si f admet a la fois un minorant et un majorant:

Im,M e RNz € Dy, m< f(x) <MoudlK >0,Vz e Dy, |f(z) < K.



* (x — > n’est ni majorée ni minorée sur R*, mais minorée (par 0) sur |0, +ool.
x

* (z + 2%) est minorée par 0 (f(0) = 0), mais non majorée sur R: Vz € R, 2% > 0 = 02,

* exp est minorée par 0, non majorée sur R: Vx € R, e > 0.

% sin est bornée sur R: Vx € R, —1 < sinz < 1.

ATTENTION!! Minorant et majorant sont des réels indépendants de z! (on veillera donc a la place des quantificateurs)

1.3.2 Maximum et minimum

Définition 6 Soit A une partie de R.
(1) Si M est un majorant de A qui appartient a A alors M est unique. On dit que M est le maximum de A que l'on

(2) Si m est un minorant de A qui appartient ¢ A alors m est unique. On dit que m est le minimum de A que l'on



Preuve:

Exemple 8 : cas des fonctions numériques. La définition 5 devient:
Soit une fonction f: R — R. (avec A = {f(z),z € Ds})
(1) On dit que f admet un maximum en zy € Dy (ou o est un point de maximum de f) si: Vo € Dy, f(x) < f(zo).
(2) On dit que f admet un minimum en zy € Dy (ou xo est un point de minimum de f) si: Vo € Dy, f(x) > f(xo).
Vocabulaire: si un majorant (minorant) est un maximum (minimum), on dit qu’il est atteint: 3zg € Dy /M = f(xo).
* La fonction carrée a un minimum (minorant atteint) en 0: Vz € R, z2>0=02

* La fonction exponentielle est minorée en 0 (non atteint): Vo € R, e > 0.

3
* La fonction sinus atteint une infinité de fois ses majorant (1 = sin(g + 2km), k € Z) et minorant (—1 = sin(—ﬂ- + 2km),
keZ).

Exemple 9 :

(1) ] = o0, 3] admet 3 pour maximum. On note que ’ensemble des majorants de | — 00, 3] est [3, +o00[ et que 3 est le plus
petit des majorants.

(2) [0, 1] admet 0 pour minimum. On note que ’ensemble des minorants de [0, 1] est | — 00, 0] et que 0 est le plus grand

des minorants.

Par contre 1 n’est pas le maximum de [0,1[ car 1 & [0,1][. On note quand-méme que ’ensemble des majorants de [0, 1] est
[1,400[ et que 1 est le plus petit des majorants: quel nom lui donner?



1.3.3 Bornes supérieure et inférieure

Définition 7 Soit A une partie de R.
(1) Si l’ensemble des majorants de A admet un plus petit élément on l’appelle borne supérieure de A et on le note

(2) Si l'ensemble des minorants de A admet un plus grand élément on lappelle borne inférieure de A et on le note

Exemple 10 sup|0, 1[= 1, inf]0, 1[= 0 et sup] — oo, 3] = max]| — oo, 3] = 3.

Remarque 10 En d’autres termes:
(1) M = sup A ssi M majore A et est le plus petit des majorants. Traduction mathématique:

M=supA <= VacA,a< M,etVe>0,dac A, M —c<a

M majore A plus petit des majorants

Preuve:
Supposons que M = sup A.
Alors M majore A, donc: Va € A, a < M.
De plus, M est le plus petit des majorants donc Ve > 0, M — ¢ ne majore pas A car M —e < M. Donc il existe a € A tel
que a > M —e.
[<]Supposons que Va € A,a < M et queVe >0,Jdac A, M —¢ <a.
Puisque Va € A, a < M, cela signifie que M est un majorant de A.
Par ailleurs, si M n’était pas le plus petit des majorants, alors il existe M’ < M qui majore A. Posons e = M — M’ > 0.
Donc Va € A, a < M' = M —e: ABSURDE.
Conclusion: M est bien le plus petit des majorants et M = sup A.

(2) De méme: m = inf A ssi m minore A et est le plus grand des minorants. Traduction mathématique:

m=infA <= VacA,a>2m,etVe>0,da€e A, m+e>a

'm minore A plus grand des minorants

Et lexistence?

Théoréme 1 (admis):
Toute partie non vide et majorée (resp. minorée) de R admet une borne supérieure (resp. inférieure).

2 Opérations sur P(F)

2.1 Intersection
Définition 8 VA, B € P(E), I’'intersection entre A et B est définie par: ’A NB={xe€E/xe€ AETzx¢c B} ‘

Remarque 11 De la méme fagon, pour toute famille de parties de E, (Ax)re[1,n], l'intersection des n ensembles A;N...NA,
n

s’écrit aussi m Aj: c’est 'ensemble des éléments de E qui appartiennent a tous les ensembles Ay:
k=1

x € ﬂAk <~ Vke[l,n], z € Ay
k=1

Proposition 3 (ADMISE):
(1) ANB = BnNA (commutatif ). (2) (ANB)NC = AN (BNC) (associatif).
(3) ANBCAetANBCB.

Définition 9 Soient A, B € P(E). A et B sont disjoints st AN B =0 (aucun élément en commun,).

Exemple 11 :

(1) AnO=0.

(2) A={2n,n € N} et B={2n+ 1,n € N} sont disjoints: un méme entier naturel ne peut étre a la fois pair et impair.

(3) 12,4[ et [4, +o0[ sont disjoints (importance du sens des crochets).

Remarque 12 Si A C B alors AN B = A.



2.2 Réunion

Définition 10 YA, B € P(E), on définit leur union par: ’A UB={ze€E/x€c AOUzxc¢c B}‘

Remarque 13 :
(1) z € AU B si z appartient au moins a 'un des deux ensembles (ou inclusif).

Par contre, si A et B sont disjoints, alors le OU de AU B est exclusif: un élément de AU B est soit dans A soit dans B.

n
(2) De la méme fagon, pour toute famille de parties de E, (A;);c[1,5], 'union des n ensembles Ay, ..., A, s’écrit aussi U A;,

c’est ’ensemble des éléments de E qui appartiennent au moins a I'un des ensembles A;:

zel|JA <= Fie{l,... n}/zeA

i=1

Exemple 12 :

(1) AUD = A; R* =] — 00, 0[U]0, +00].

(2) A ={2n,n € N} est I’ensemble des entiers pairs. A C N.

B = {2n+ 1,n € N} est 'ensemble des entiers impairs. B C N.

OnaAUB=N. .
(3) Considérons E = [0,10[ et Vi € [0,9], 4; = [i,i+ 1[. On a U A;=E.
=0
Remarque 14 Si A C B alors AUB = B.
Proposition 4 (ADMISE):
(1) AUB = BUA (commutatif ). (2) (AUB)UC = AU (BUC) (associatif).
(8) ACAUB et BC AUB. (4) Si ACC et BC C alors AUB CC.

Proposition 5 (ADMISE):
(1) (AuUB)NC =(ANnC)u(BNC).
(2) (ANB)UC =(AuC)N(BUC).

Remarque 15 (généralisation & un nombre fini d’ensembles):
Pour toutes parties A, By,..., B, (n € N*) d’'un ensemble E, on a:

AN (OB’> :LnJ(AﬂBi) et AU <ﬁ31> :ﬁ(AUBZ)

i=1

2.3 Complémentaire

Définition 11 VA € P(E), on définit son complémentaire, noté E\ A ou A, par: |A={x € E/z & A}

Exemple 13 : - B
(1) Soit un ensemble E: E =0 et ) = E.
(2) R\] — o0, 0] =]0, 4+o00].

Progosition 6 :
(1) A=A - o
(2) Lois de Morgan: ANB=AUB et AUB=ANB.

Preuve: .
(1) Par définition, A= {z € E/xr ¢ A} = {z € E/x € A} = A.
(2)

r€ANB < ¢ ANB < non(r € ANB) < ...
Conclusion: ANB =AU B.

* En appliquant la formule précédente & A et B, il vient: AN B = AUB=AUB.
Donc AUB = AN B.

i=1



Remarque 16 (généralisation & un nombre fini d’ensembles):
Pour toutes parties Ay,..., A, (n € N*) d’'un ensemble E, on a:

Ai:OEet OAiZﬁE
i=1 i=1 i=1

DL

i=1

2.4 Partition, systéme complet

Définition 12 Soient Ay, ..., Ay, une famille de parties de E. (A;)ig[j1,n) forme une partition de E si:

OViEI, Ai 75@
o Vi j, AiNA; =0 (deux a deuz disjoints)
iel

CAPACITE EXIGIBLE 1 : savoir former une partition, ou un systéme complet, d’un ensemble.
(1) A={2n,n € N} et B={2n+ 1,n € N} forment une partition de N: un entier naturel est soit pair soit impair.
(2) Soit A; = [i,i+ 1], ¢ € [0,9].

La famille (A;);efj0,9) forme une partition de [0, 10].

(3) Considérons A =] — 00,0] et B = [0, +-00[.

AU B =R, mais A et B ne forment pas une partition de R car AN B = {0} # 0!
Par contre, | — 00, 0[ et [0, +oo[ forment une partition de R ...

(4) Situations probabilistes:

e On lance un dé a six faces et on note E =“on obtient un numéro pair’= {2, 4, 6}.
Les singletons {2}, {4} et {6} forment une partition de E.

e On lance deux fois de suite une piéce de monnaie et on note £ =“on obtient une seule fois face”.
Les ensembles {(P, F')} (pile puis face) et {(F, P)} (face puis pile) forment une partition de E.

Définition 13 Soit E un ensemble et Ay, ..., A, une famille de parties de E.
(Az‘)ie{u,n]] est un systéme complet de E si les parties sont deux & deux disjointes, de réunion égale a F:

{ oVi#j, AiNAj; =0 (deux a deuz disjoints)
i€l

Remarque 17 La différence entre partition et systéme complet de E est que pour une partition, toutes les parties doivent
étre non vides, ce qui n’est pas le cas d’un systéme complet.

POINT METHODE 3 : Penser au complémentaire pour former un systéme complet ou une partition:
e Aet E\ A étant toujours disjoints, ils forment TOUJOURS un systéme complet de E.
e Attention, pour une partition: VA € P(E) tel que A non vide et A# E, A et E'\ A forment une partition de E.

2.5 Différence
Définition 14 Soient A et B deuz parties de E. On définit leur différence par: ’A \B={z€E/xc€Aectx¢gB} ‘

Exemple 14 R\ [—1,1] =] — o0, —1[U]1, +00].

Remarque 18 Ona|A\B=ANB

d’ott I'écriture: A=FENA=FE\A..

3 Produit cartésien

Définition 15 :
Soient E et F' deux ensembles. On définit leur produit cartésien par: ’E x F={(z,y)/r e E etyeF} ‘
Les éléments de EE x F' sont appelés couples ou 2-uplets.




Exemple 15 Le plan R2 =R x R.
Un élément de R x R est un couple (de coordonnées) (zg, yo) ot zg € R (est appelé abscisse) et yo € R (est appelé ordonnée).
On peut les tracer dans un repére:

Donc, par exemple: (1,2) € R2, (—=5,7) € RZ. On remarque que (1,2) # (2,1), donc 'ordre est important!

Exemple 16 :

(1) (=2,V5) € Z x R car —2 € Z et /5 € R. Mais (v/5,—2) ¢ Z x R car v/5 ¢ Z.

(2) E={1,2} et FF ={0,1,2}. Déterminons F x F.

Tableau o deux entrées:

E\F| 0 1 2
1 (1,
2

Donc FE x F ={(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}.
On remarque que (1,0) € E x F mais (0,1) ¢ E x F.

Remarque 19 De la méme fagon, on peut définir le produit cartésien de n ensembles E, Fs, ..., E, par:
Ey x ... X E, est ensemble des n-uplets (z1,...,2,) ot z; € E;, Vi € [1,n].

Si E;, = EVie[l,n], onnote By X ... x E, = E" = {(z1,...,2,)/Vk € [1,n] zx, € E}.
Un élément (z1,...,z,) de EP sera appelé une p-liste d’éléments de E (au lieu de p-uplet).

Exemple 17 L’espace R? =R x R x R. On ajoute une coordonnée & R?: la cote.

Un 3-uplet de R? a donc 3 coordonnées: (¢, Yo, 20)-
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