
Dénombrement

BCPST 1C – Mme MOREL

1 Ensembles finis (cardinaux)

1.1 Définition
Définition 1 :
E est un ensemble fini s’il est vide (ne contient aucun élément) ou s’il possède un nombre fini d’éléments (deux à deux
distincts).
On appelle cardinal de E, et on note card(E), le nombre d’éléments de E.
Déterminer le cardinal d’un ensemble fini E, c’est dénombrer E.

Exemple 1 card ∅ = 0; E = {1, 2, 3}. E est fini et card(E)= 3.

1.2 Cardinal d’une réunion
Proposition 1 (admise):
(1) Soient E et F deux ensembles finis, alors E ∪ F est finie et:

card (E ∪ F ) = card E+ card F− card (E ∩ F ) Formule de Poincaré

En particulier, si E et F sont disjoints, card (E ∪ F ) =card E+ card F .
(2) Soient E,F,G trois ensembles finis, alors E ∪ F ∪G est finie et:

card (E ∪ F ∪G) = card E+ card F+ card G− [ card (E ∩ F )+ card (E ∩G)+ card (F ∩G)]+ card (E ∩ F ∩G)

"Patates"::
(1) On compte deux fois card (E ∩ F ):

(2) On compte deux fois card (E ∩ F ), card (E ∩G) et card (F ∩G), et on compte trois fois card (E ∩ F ∩G):

Remarque 1 Le cardinal de l’union se généralise à n ensembles finis, mais la formule (formule du crible) est très difficile
à écrire.
En revanche, si les ensembles sont disjoints deux à deux:

Corollaire 1 Soient E1 , . . . , En, n ensembles finis deux à deux disjoints, alors:
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card (E1 ∪ . . . ∪ En) =

n∑
k=1

card Ek

CAPACITÉ EXIGIBLE 1 : Dénombrement par disjonction de cas (partition ou système complet):
Dans la formule du crible, le OU est inclusif, tandis que dans la formule du Corollaire, le OU est exclusif.
Donc, pour dénombrer un ensemble, on sera souvent amené à le “découper” en plusieurs sous-ensembles deux à deux disjoints
(faire des cas: soit . . . soit . . . ), pour ensuite sommer les cardinaux de ces sous-ensembles.

Exemple 2 Dans un jeu de 32 cartes, on tire 5 cartes simultanément. Dénombrer les mains ayant au moins un as.

Etape 1: ENSEMBLES
Soit A = { mains ayant au moins un as }. On cherche card(A).
(ATTENTION! Ne pas confondre ensemble et cardinal: écrire A = { nombre de mains ayant au moins un as } est faux...)

Etape 2: FORMULE

Etape 3: CALCULS (cf Parties 2. et 3.)

1.3 Cardinal d’une partie
Proposition 2 Soit E un ensemble fini et A, B deux parties de E. Alors:

(1) card (E \A) = card E− card A.
(2) card (B \A) = card B− card (A ∩B).

Preuve: On applique la formule de Poincaré aux ensembles disjoints suivants:
(1) E = A et F = E \A, de réunion E.
(2) E = B \A et F = B ∩A, de réunion B.

CAPACITÉ EXIGIBLE 2 : dénombrement en utilisant le complémentaire:
Il faut surtout penser à cette méthode quand elle évite de faire une partition ou un système complet.
Reprise de l’exemple 2:
ENSEMBLES
Si on considère plutôt E = { mains possibles } et E \A = { }, alors:
FORMULE

CALCULS Il y a donc moins de calculs à faire qu’en passant par une partition...!

Proposition 3 Soit E un ensemble fini. Alors:
toute partie A de E est finie et card(A) 6 card(E), avec le cas d’égalité: A = E ⇐⇒ card(A) = card(E).

Preuve:

POINT METHODE 1 : Egalité de deux ensembles FINIS:
D’après le cours de Logique, on démontre que deux ensembles sont égaux (E = F ) par double inclusion: E ⊂ F et F ⊂ E.
Quand les ensembles sont FINIS, il suffit de montrer une des deux inclusions (on montre la plus simple en général) et de
montrer que les cardinaux sont égaux.
(Méthode à retenir pour l’algèbre linéaire, dans le cas d’espaces vectoriels de dimension FINIE.)
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1.4 Cardinal d’un produit cartésien
Proposition 4 (admise): Soient E et F deux ensembles finis.
Alors leur produit cartésien E × F est fini et: card E × F = card E× card F

Remarque 2 :
(1) Pour bien comprendre cette formule, on peut considérer un tableau à deux entrées:

E \ F 0 1 2
1 (1, 0) (1, 1) (1, 2)
2 (2, 0) (2, 1) (2, 2)

(2) ATTENTION!! Dans cette formule le signe × n’est pas le même!
dans E × F : il s’agit du signe du produit cartésien, qui se lit “croix”,
dans card E× card F : il s’agit du signe "multiplier" chez les réels, qui se lit “fois”.

(3) Généralisation (par récurrence) à n ensembles E1 × . . .× En: card (E1 × . . .× En) = card E1 × . . .× card En.
En particulier, card (En) = (card E)

n, ∀n ∈ N∗

2 Dénombrement des applications (choix successifs)
(La notion d’ORDRE dans ce paragraphe est primordiale: l’ordre des éléments compte)

2.1 Nombre d’applications
Définition 2 Soit E un ensemble.
Une p-liste de E est un élément de Ep (ou p-uplet d’éléments de E): (x1, . . . , xp) où xi ∈ E ∀i ∈ [|1, p|].

Théorème 1 Le nombre de p-listes d’un ensemble à n éléments est np.

Preuve: Soit E un ensemble à n éléments, soit card(E) = n. Par définition du produit cartésien, l’ensemble de toutes les
p-listes de E est Ep = E × . . .× E︸ ︷︷ ︸

p fois

.

Donc, d’après la Proposition 4, le nombre de p-listes de E est card(Ep) = (card E)p = np.

CAPACITÉ EXIGIBLE 3 :

Choix SUCCESSIFS de p éléments parmi n éléments, avec RÉPÉTITIONS POSSIBLES.

Soit une p-liste quelconque (x1, . . . , xp) d’un ensemble E à n éléments.
Connaître le nombre de p-listes de E revient à calculer le nombre de choix pour (x1, . . . , xp).
Ici, il y a un ordre et les xi ne sont pas forcément distinctes, donc répétitions possibles : choisir (x1, . . . , xp) revient à
choisir x1 PUIS x2 . . . PUIS xp:
→ nb de choix pour x1:

→ nb de choix pour x2:

...
→ nb de choix pour xp:

Conclusion: Il y a façons de choisir (x1, . . . , xp), donc le nombre de p-listes de E est . . .

Exemple 3 On compose au hasard un numéro de téléphone. Calculer:
(1) le nombre de numéros possibles.
(2) Le nombre de numéros terminant par 26.
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Conclusion: Dès que les notions ORDRE et RÉPÉTITIONS POSSIBLES sont couplées, on dénombre des p-listes (donc
résultats sous la forme np, où p est le nombre de cases et n est le nombre de choix par case):

- construire des mots,
- codes d’accès,
- tirages (cartes, boules, etc . . .) successifs (= ordre) et avec remise (= répétitions possibles),
- A compléter . . .

Corollaire 2 Soient E et F deux ensembles finis: card E = p et card F = n.
Alors l’ensemble des applications de E dans F (FE) est fini et le nombre d’applications de E dans F est:

card(FE) = (card F )card E = np.

Preuve: Soit f une application de E dans F . Posons E = {x1, . . . , xp} (puisque E contient p éléments).
Se donner f revient à se donner (f(x1), . . . , f(xp))︸ ︷︷ ︸

p-liste de F à n éléments

où ∀i ∈ [|1, p|], f(xi) ∈ F .

Donc, par le Théorème 1, il y a np façons de choisir f .

2.2 Nombre d’injections
Définition 3 Soit un ensemble E.
Un p-arrangement de E est une p-liste d’éléments de E deux à deux distincts: (x1, . . . , xp) ∈ Ep, où xi 6= xj si i 6= j.
Autrement dit: un p-arrangement de E est une p-liste de E sans répétition.

Exemple 4 (1, 2, 3) est un 3-arrangement de N, mais pas (1, 1, 3).

Théorème 2 Le nombre de p-arrangements d’un ensemble fini à n éléments est noté Ap
n et vaut:

Ap
n =

∣∣∣∣ n (n− 1) . . . (n− p+ 1) si p 6 n
0 si p > n

Preuve:
Soit E un ensemble à n éléments.
Si p > n:

Si p 6 n:
soit (x1, . . . , xp) un p-arrangement de E. Calculons le nombre de façons de choisir (x1, . . . , xp), ce qui revient à calculer Ap

n.
Ici, il y a un ordre et les xi sont tous distincts, donc aucune répétition : choisir (x1, . . . , xp) revient à choisir x1 PUIS x2

. . . PUIS xp:
→ nb de choix pour x1:

→ nb de choix pour x2:

→ nb de choix pour x3:

...
→ nb de choix pour xp:

Conclusion: il y a façons de choisir (x1, . . . , xp), donc le nombre de
p-arrangements de E est . . .

CAPACITÉ EXIGIBLE 4 :

Choix SUCCESSIFS de p éléments parmi n éléments, SANS RÉPÉTITIONS.
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Exemple 5 Lors d’une course hippique, 15 chevaux sont en compétition. Donner le nombre de paris possibles au tiercé.

Dès que les notions ORDRE et AUCUNE RÉPÉTITION sont couplées, on dénombre des p-arrangements (donc résultats
sous la forme Ap

n, où p est le nombre de cases et n est le nombre de choix pour la première case):
- courses hippiques, courses d’athlétisme, . . .
- élections,
- tirages (cartes, boules, etc . . .) successifs (= ordre) et sans remise (= répétitions impossibles),
- A compléter . . .

Remarque 3 On peut réécrire Ap
n pour p 6 n:

Donc: ∀p 6 n, Ap
n =

n!

(n− p)!

Remarque 4 : astuce pour écrire Ap
n.

n est le premier terme du produit et p est le nombre de termes du produit.
En effet, entre n et n− p+ 1, il y a n− (n− p+ 1) + 1 = p termes.
Exemple: pour A3

15, le produit aura trois termes, dont le premier est 15, d’où A3
15 = 15× 14× 13.

Corollaire 3 Soient E et F deux ensembles finis: card E = p et card F = n.
Le nombre d’applications injectives de E dans F est Ap

n.

Preuve: Posons E = {x1, . . . , xp} (où les x1, . . . , xp sont deux à deux distincts).
Se donner une application injective f de E dans F revient à se donner un p-arrangement (f(x1), . . . , f(xp)) où ∀i ∈ [|1, p|],
f(xi) ∈ F .
En effet, par injection, x 6= y ⇒ f(x) 6= f(y), donc f est injective ssi les éléments de (f(x1), . . . , f(xp)) sont deux à deux
distincts.
Donc, par le Théorème 2, il y a Ap

n façons de choisir f .

2.3 Nombre de bijections
2.3.1 Bijection et cardinal

Théorème 3 Soient E et F deux ensembles finis.
card(E) =card(F ) ssi il existe une bijection entre E et F .

Preuve:
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2.3.2 Nombre de permutations

Définition 4 Soit un ensemble E. Une permutation de E est une liste de E contenant exactement une fois chaque élément
de E.

Théorème 4 Le nombre de permutations d’un ensemble à n éléments est n!.

Preuve : Soit E un ensemble à n éléments.
Soit (x1, . . . , xn) une permutation de E. C’est une n-liste de E sans répétition, donc An

n = n! choix.

CAPACITÉ EXIGIBLE 5 :

Choix SUCCESSIFS de TOUS les éléments d’un ensemble à n éléments, SANS RÉPÉTITIONS.

Exemple 6 Lors d’un dîner entre amis, il y a 4 personnes à placer autour d’une table entourée de 4 chaises. Combien y
a-t-il de façons pour placer les gens?

3 Dénombrement des parties (choix simultané)
(Dans toute cette partie, l’ORDRE des éléments choisis n’a aucune importance)

3.1 Parties à p éléments (combinaisons)
3.1.1 Définition

Définition 5 Soit E un ensemble fini.
On appelle combinaison à p éléments de E, ou p-combinaison de E, toute partie de E contenant p éléments.
On peut noter Pp(E) l’ensemble des combinaisons à p éléments de E.

Exemple 7 Considérons l’ensemble E = {1, 2, 3}.
- Combinaisons à 0 éléments de E: ∅.
- Combinaisons à 1 élément de E: {1}, {2}, {3}.
- Combinaisons à 2 éléments de E: {1, 2}, {2, 3}, {1, 3}.
- Combinaisons à 3 éléments de E: {1, 2, 3}.

Remarque 5 :
(1) Evidemment, 0 6 p 6 card E.
(2) Ici, l’ordre n’ a aucune importance: les éléments d’une combinaison sont choisis simultanément (ou en paquet)
parmi ceux de E. ils sont donc tous distincts deux à deux!

Théorème 5 Le nombre de combinaisons à p éléments d’un ensemble à n éléments est égal à
(
n

p

)
, soit:

(
n
p

)
=

∣∣∣∣∣∣
n!

p! (n− p)!
si p 6 n

0 si p > n

Preuve:
• si p > n:

• si p 6 n:
former un p-arrangement (x1, . . . , xp) de E (il y en a Ap

n) revient à choisir p éléments parmi n, qui sont bien deux à deux
distincts, mais ils sont ordonnés.
Comme il y a p! ordres différents possibles, le nombre de combinaisons {x1, . . . , xp} de E est donc:

cardPp(E) =
Ap

n

p!
=

n!

p! (n− p)!
=

(
n

p

)
.
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Exemple 8 Reprise de l’exemple 2: CALCULS

3.1.2 Vision ensembliste des propriétés des coefficients binômiaux

Rappel 1 ∀n ∈ N,
(

n
0

)
= 1 =

(
n
n

)
En effet:
il a . . . . . . partie à 0 éléments d’un ensemble à n éléments, c’est . Donc

(
n
0

)
= . . ..

De même, il a . . . . . . partie à n éléments d’un ensemble à n éléments, c’est . Donc
(

n
n

)
= . . ..

Proposition 5 :

∀n ∈ N, ∀p 6 n,
(

n
p

)
=

(
n

n− p

)
.

Preuve: (Méthode du double décompte)
Dénombrons de deux façons différentes le nombre de parties à p éléments de E, ensemble à n éléments.

Façon 1: c’est le Théorème 5, il y en a . . ..
Façon 2: choisir A revient à choisir . . . . . ., donc on dénombre les parties de E à . . . . . . éléments. Donc il y en a . . . . . .

Conclusion:
(

n
p

)
=

(
n

n− p

)
.

Proposition 6 : Formule du chef

∀n ∈ N∗, ∀p ∈ N∗, tels que p 6 n,
(
n

p

)
=

n

p

(
n− 1

p− 1

)
Preuve: (Méthode du double décompte)
Dénombrons de deux façons différentes le nombre de parties à p éléments de E (ensemble à n éléments) ayant un chef.
Façon 1: on choisit les p éléments puis le chef parmi ces p éléments.

Façon 2: on choisit le chef dans les n éléments de E puis les p− 1 éléments restants.

Proposition 7 : Triangle de Pascal

∀n ∈ N, ∀p 6 n,
(

n
p

)
+

(
n

p+ 1

)
=

(
n+ 1
p+ 1

)

7



Preuve: (Méthode du double décompte)
Dénombrons de deux façons différentes le nombre de parties à p+ 1 éléments de E, ensemble à n+ 1 éléments.

Façon 1: c’est le Théorème 5, il y en a . . . . . .
Façon 2: soit a un élément de E.
Pour toute partie A à (p+ 1) éléments de E, soit a ∈ A, soit a 6∈ A.
ENSEMBLES

Notant Pp+1(E) l’ensemble des parties de E à (p+ 1) éléments, on obtient donc la partition suivante:
Pp+1(E) = . . . . . .

FORMULE

CALCULS

Conclusion: card Pp+1(E) =
façon 1

(
n+ 1
p+ 1

)
=

façon 2

(
n
p

)
+

(
n

p+ 1

)
.

3.2 Parties d’un ensemble fini
Théorème 6 Le nombre de parties d’un ensemble à n éléments est 2n, soit card(P(E)) = 2n, où E est un ensemble tel que
card(E) = n.

Preuve: Soit E un ensemble à n éléments.
Pour toute partie A de E: soit A a 0 éléments, soit A a 1 élément, soit . . . soit A a n éléments.
ENSEMBLES
On obtient donc une partition de P(E) de la façon suivante: notant Pk(E) l’ensemble des parties de E à k éléments,
k ∈ [|0, n|], la famille (Pk(E))k∈[|0,n|] forme une partition de P(E), donc

FORMULE

card(P(E)) =

n∑
k=0

card(Pk(E))

CALCULS
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