Dénombrement

BCPST 1C — Mme MOREL

1 Ensembles finis (cardinaux)

1.1 Définition

Définition 1 :

E est un ensemble fini s’il est vide (ne contient aucun élément) ou s’il posséde un nombre fini d’éléments (deur & deux
distincts).

On appelle cardinal de E, et on note card(E), le nombre d’éléments de E.

Déterminer le cardinal d’un ensemble fini E, c’est dénombrer E.

Exemple 1 card ) = 0; E = {1,2,3}. E est fini et card(E)= 3.

1.2 Cardinal d’une réunion

Proposition 1 (admise):
(1) Soient E et F deux ensembles finis, alors E U F est finie et:

’ card (EUF) = card E+ card F— card (ENF) ‘ Formule de Poincaré

En particulier, si E et F sont disjoints, card (E U F) =card E+ card F.
(2) Soient E, F,G trois ensembles finis, alors EUF UG est finie et:

’card (FUFUQG) = card E+ card F+ card G — | card (ENF)+ card (ENG)+ card (FNG)|+ card (ENFN G)‘

"Patates”::
(1) On compte deux fois card (E N F):

(2) On compte deux fois card (E N F), card (ENG) et card (F N G), et on compte trois fois card (EN FNG):

Remarque 1 Le cardinal de 'union se généralise a n ensembles finis, mais la formule (formule du crible) est trés difficile
a écrire.
En revanche, si les ensembles sont disjoints deux a deux:

Corollaire 1 Soient E1, ..., E,, n ensembles finis deux a deux disjoints, alors:



card (E1U...UE,) = Z card B},
k=1

CAPACITE EXIGIBLE 1 : Dénombrement par disjonction de cas (partition ou systéme complet):

Dans la formule du crible, le OU est inclusif, tandis que dans la formule du Corollaire, le OU est exclusif.

Donc, pour dénombrer un ensemble, on sera souvent amené a le “découper” en plusieurs sous-ensembles deux & deux disjoints
(faire des cas: soit ... soit ... ), pour ensuite sommer les cardinaux de ces sous-ensembles.

Exemple 2 Dans un jeu de 32 cartes, on tire 5 cartes simultanément. Dénombrer les mains ayant au moins un as.

Etape 1: | ENSEMBLES

Soit A = { mains ayant au moins un as }. On cherche card(A4).
(ATTENTION! Ne pas confondre ensemble et cardinal: écrire A = { nombre de mains ayant au moins un as } est fauz...)

Etape 2: | FORMULE

Etape 3: | CALCULS | (cf Parties 2. et 3.)

1.3 Cardinal d’une partie

Proposition 2 Soit E un ensemble fini et A, B deux parties de E. Alors:
(1) card (E\ A) = card E— card A.
(2) card (B\ A) = card B— card (AN B).

Preuve: On applique la formule de Poincaré aux ensembles disjoints suivants:
(1) E=Aet F=FE\ A, de réunion F.
(2) E=B\ Aet F=BnNA, de réunion B.

]
CAPACITE EXIGIBLE 2 : dénombrement en utilisant le complémentaire:
Il faut surtout penser a cette méthode quand elle évite de faire une partition ou un systéme complet.
Reprise de ’exemple 2:
ENSEMBLES
Si on considére plutot E = { mains possibles } et E\ A = { }, alors:
FORMULE
CALCULS |11 y a donc moins de calculs & faire qu’en passant par une partition...!
Proposition 3 Soit E un ensemble fini. Alors:
toute partie A de E est finie et card(A) < card(E), avec le cas d’égalité: A = FE <= card(A) = card(E).
Preuve:
]

POINT METHODE 1 : Egalité de deux ensembles FINIS:

D’apres le cours de Logique, on démontre que deux ensembles sont égaux (E = F') par double inclusion: £ C F et F' C E.
Quand les ensembles sont FINIS, il suffit de montrer une des deux inclusions (on montre la plus simple en général) et de
montrer que les cardinaux sont égaux.

(Méthode a retenir pour l'algébre linéaire, dans le cas d’espaces vectoriels de dimension FINIE.)



1.4 Cardinal d’un produit cartésien

Proposition 4 (admise): Soient E et F deux ensembles finis.
Alors leur produit cartésien E X F' est fini et: ’ card E x F = card Ex card F

Remarque 2 :
(1) Pour bien comprendre cette formule, on peut considérer un tableau a deux entrées:

E\F| 0 1 2
1 [ (Lo @) [(1,2)
2 (2,00 2122

(2) ATTENTION!! Dans cette formule le signe x n’est pas le méme!
dans F x F': il s’agit du signe du produit cartésien, qui se lit “croix”,
dans card Ex card F: il s’agit du signe "multiplier" chez les réels, qui se lit “fois”.
(3) Généralisation (par récurrence) a n ensembles By X ... x E,: card (Ey X ... X E,) = card E} x ... X card E,.

card (E") = (card E)", Vn € N*

En particulier,

2 Dénombrement des applications (choix successifs)

(La notion d’ORDRE dans ce paragraphe est primordiale: ’ordre des éléments compte)

2.1 Nombre d’applications

Définition 2 Soit E un ensemble.
Une p-liste de E est un élément de EP (ou p-uplet d’éléments de E): (z1,...,x,) ot x; € E Vi € [|1,p]].

Théoréme 1 Le nombre de p-listes d’un ensemble a n éléments est nP.

Preuve: Soit E un ensemble a n éléments, soit card(E) = n. Par définition du produit cartésien, 'ensemble de toutes les
p-listes de EFest EP = E x ... X F.
———

p fois
Done, d’aprés la Proposition 4, le nombre de p-listes de E est card(EP) = (card E)P = nP.

CAPACITE EXIGIBLE 3 :
Choix SUCCESSIFS de p éléments parmi n éléments, avec REPETITIONS POSSIBLES.

Soit une p-liste quelconque (z1,...,x,) d’'un ensemble E & n éléments.
Connaitre le nombre de p-listes de E revient & calculer le nombre de choix pour (z1,...,zp).

Ici, il y a un et les x; ne sont pas forcément distinctes, donc ’répétitions possibles ‘: choisir (z1,...,2p) revient a
choisir 1 PUIS 25 ... PUIS z,:
— nb de choix pour z1:

— nb de choix pour xs:

— nb de choix pour zp:
Conclusion: Il y a facons de choisir (x1,...,xp), donc le nombre de p-listes de E est ...
Exemple 3 On compose au hasard un numéro de téléphone. Calculer:

(1) le nombre de numeéros possibles.
(2) Le nombre de numéros terminant par 26.



Conclusion: Dés que les notions ORDRE et REPETITIONS POSSIBLES sont couplées, on dénombre des p-listes (donc
résultats sous la forme nP, ou p est le nombre de cases et n est le nombre de choix par case):

- construire des mots,

- codes d’acces,

- tirages (cartes, boules, etc ...) successifs (= ordre) et avec remise (= répétitions possibles),

- A compléter . ..

Corollaire 2 Soient E et F' deux ensembles finis: card E = p et card F = n.
Alors l’ensemble des applications de E dans F (F¥) est fini et le nombre d’applications de E dans F est:

card(F®) = (card F)°™ F = pP,

Preuve: Soit f une application de E dans F. Posons E = {z1,...,2,} (puisque E contient p éléments).
Se donner f revient a se donner (f(z1),...,f(zp)) ou Vi€ [[1,p|], f(z;) € F.

p-liste de F' a n éléments
Donc, par le Théoréme 1, il y a nP facons de choisir f.

]
2.2 Nombre d’injections
Définition 38 Soit un ensemble E.
Un p-arrangement de E est une p-liste d’éléments de E deux & deux distincts: (x1,...,zp) € EP, ot x; # x; si1# j.
Autrement dit: un p-arrangement de E est une p-liste de E sans répétition.
Exemple 4 (1,2,3) est un 3-arrangement de N, mais pas (1,1, 3).
Théoréeme 2 Le nombre de p-arrangements d’un ensemble fini & n éléments est noté AP et vaut:
» nn—1)...(n—p+1) sip<n
AP = .
0 sip>n
Preuve:
Soit F un ensemble & n éléments.
Sip>n:
Sip<n:
soit (x1,...,xp,) un p-arrangement de E. Calculons le nombre de facons de choisir (z1,...,z,), ce qui revient a calculer A?P.
Ici, il y a un et les x; sont tous distincts, donc | aucune répétition ‘: choisir (z1,...,x,) revient & choisir ;1 PUIS z,
. PUIS z,:

— nb de choix pour x1:

— nb de choix pour xs:

— nb de choix pour x3:

— nb de choix pour z:
Conclusion: il y a facons de choisir (z1,...,2;), donc le nombre de
p-arrangements de F est ...

]

CAPACITE EXIGIBLE 4 :
Choix SUCCESSIFS de p éléments parmi n éléments, SANS REPETITIONS.



Exemple 5 Lors d’une course hippique, 15 chevaux sont en compétition. Donner le nombre de paris possibles au tiercé.

Dés que les notions ORDRE et AUCUNE REPETITION sont couplées, on dénombre des p-arrangements (donc résultats
sous la forme AP, ou p est le nombre de cases et n est le nombre de choix pour la premiére case):

- courses hippiques, courses d’athlétisme, ...

- élections,

- tirages (cartes, boules, etc ...) successifs (= ordre) et sans remise (= répétitions impossibles),

- A compléter ...

Remarque 3 On peut réécrire A? pour p < n:

n!

Donc: |Vp < n, AL = ———
(n—p)!

Remarque 4 : astuce pour écrire AP.

n est le premier terme du produit et p est le nombre de termes du produit.

En effet, entre net n —p+1,ilyan—(n—p+ 1)+ 1 = p termes.

Exemple: pour A3, le produit aura trois termes, dont le premier est 15, d’ott A% = 15 x 14 x 13.

Corollaire 3 Soient E et F deux ensembles finis: card E = p et card F = n.
Le nombre d’applications injectives de E dans F' est AP.

Preuve: Posons E = {x1,...,2,} (ot les z1,...,x, sont deux & deux distincts).
Se donner une application injective f de E dans F revient & se donner un p-arrangement (f(x1),..., f(z,)) o Vi € [|1,p]],
f(l‘l) eF.

En effet, par injection,  # y = f(x) # f(y), donc f est injective ssi les éléments de (f(z1),..., f(xp)) sont deux a deux
distincts.
Donc, par le Théoréme 2, il y a AP facons de choisir f.

2.3 Nombre de bijections
2.3.1 Bijection et cardinal

Théoreme 3 Soient E et F' deux ensembles finis.
card(E) =card(F) ssi il existe une bijection entre E et F.

Preuve:



2.3.2 Nombre de permutations

Définition 4 Soit un ensemble E. Une permutation de F est une liste de E contenant exactement une fois chaque élément
de E.

Théoréme 4 Le nombre de permutations d’un ensemble a n éléments est n!.

Preuve : Soit E un ensemble & n éléments.
Soit (21, ...,2,) une permutation de E. C’est une n-liste de E sans répétition, donc A = n! choix.

CAPACITE EXIGIBLE 5 :
Choix SUCCESSIFS de TOUS les éléments d’un ensemble & n éléments, SANS REPETITIONS.

Exemple 6 Lors d’'un diner entre amis, il y a 4 personnes a placer autour d’une table entourée de 4 chaises. Combien y
a-t-il de facons pour placer les gens?

3 Dénombrement des parties (choix simultané)

(Dans toute cette partie, 'ORDRE des éléments choisis n’a aucune importance)

3.1 Parties a p éléments (combinaisons)
3.1.1 Définition

Définition 5 Soit E un ensemble fini.
On appelle combinaison a p éléments de E, ou p-combinaison de E, toute partie de E contenant p éléments.
On peut noter P,(E) lensemble des combinaisons & p éléments de E.

Exemple 7 Considérons 'ensemble E = {1, 2, 3}.
- Combinaisons a 0 éléments de E: .
- Combinaisons & 1 élément de E: {1}, {2}, {3}.
- Combinaisons a 2 éléments de E: {1,2},{2,3},{1,3}.
- Combinaisons a 3 éléments de E: {1,2,3}.

Remarque 5 :
(1) Evidemment, 0 < p < card E.
(2) Ici, ’ordre n’ a aucune importance: les éléments d’'une combinaison sont choisis simultanément (ou en paquet)

parmi ceux de E. |ils sont donc tous distincts deux a deux!

- - . . \ 27 2 \ 27 2 s N n .
Théoréme 5 Le nombre de combinaisons a p éléments d’un ensemble a n éléments est égal o ( , Soit:
p

n!
n Iy sSip<n
p )= | Pn=p)
0 stp>n
Preuve:
esip>n:
esip<n:
former un p-arrangement (z1,...,x,) de E (il y en a AP) revient a choisir p éléments parmi n, qui sont bien deux a deux
distincts, mais ils sont ordonnés.
Comme il y a p! ordres différents possibles, le nombre de combinaisons {z1,...,z,} de E est donc:
AP n! n
cardP,(E) = —? =4 = ( )
pt plln=p)! \p



Exemple 8 Reprise de ’exemple 2: | CALCULS

3.1.2 Vision ensembliste des propriétés des coefficients binéomiaux

n n
Rappel 1 VneN,<0>:1:<n)

En effet:
ila...... partie a 0 éléments d’un ensemble a n éléments, c’est . Donc < 8 > =...
De méme, il a ...... partie & n éléments d’un ensemble & n éléments, c’est . Donc ( Z ) =...

Proposition 5 :

VnEN,Vpgn,<n>:( " )
p n—p

Preuve: (Méthode du double décompte)
Dénombrons de deux facons différentes le nombre de parties a p éléments de F, ensemble & n éléments.

Fagon 1: c’est le Théoréme 5, il yen a .. ..
Fagon 2: choisir A revient & choisir .. .... , donc on dénombre les partiesde EF & ...... éléments. Doncilyena ......

Conclusion: ( " ) = ( " )
D n—p

Proposition 6 : Formule du chef

—1
Vn € N*, Vp € N*, tels que p < n, (n) _n <n )
p p\p—1

Preuve: (Méthode du double décompte)
Dénombrons de deux fagons différentes le nombre de parties a p éléments de E (ensemble & n éléments) ayant un chef.
Fagon 1: on choisit les p éléments puis le chef parmi ces p éléments.

Fagon 2: on choisit le chef dans les n éléments de E puis les p — 1 éléments restants.

Proposition 7 : Triangle de Pascal

n n n+1
< f—
VnEN,Vp\n,<p>+<p+1> (p—i—l)



Preuve: (Méthode du double décompte)
Dénombrons de deux facons différentes le nombre de parties & p + 1 éléments de E, ensemble & n + 1 éléments.

Fagon 1: c’est le Théoréme 5,ilyena......
Fagon 2: soit a un élément de F.
Pour toute partie A a (p+ 1) éléments de E, soit a € A, soit a € A.

ENSEMBLES

Notant P,11(E) Pensemble des parties de E a (p + 1) éléments, on obtient donc la partition suivante:
Por1(E)=......

FORMULE

Conclusion: card Ppi1(E) fagon 1 ( Zii ) fagon 2 ( Z ) " ( pi 1 )

3.2 Parties d’un ensemble fini

Théoréme 6 Le nombre de parties d’un ensemble a n éléments est 2", soit card(P(E)) = 2", ot E est un ensemble tel que
card(E) = n.

Preuve: Soit E un ensemble a n éléments.
Pour toute partie A de E: soit A a 0 éléments, soit A a 1 élément, soit ... soit A a n éléments.

ENSEMBLES

On obtient donc une partition de P(E) de la fagon suivante: notant Pjp(F) lensemble des parties de E a k éléments,
k € [|0,n]], la famille (Pk(E));¢(0,,; forme une partition de P(£), donc

FORMULE

card(P(E)) = Z card(Px(E))
k=0



