Puissances d'une matrice carrée

BCPST 1C - Mme MOREL

Soit une matrice carrée d'ordre $n, A \in \mathcal{M}_n(\mathbb{K})$, où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Le but de ce chapitre est de calculer les puissances de A (A^p , pour tout $p \in \mathbb{N}$), et d'appliquer ce calcul aux suites matricielles. Cette année, on distinguera deux méthodes pour le calcul de A^p , une autre méthode sera vue en deuxième année: celle utilisant la diagonalisation d'une matrice.

1 Première méthode: par récurrence

1.1 Raisonner par récurrence

On peut, en calculant les premières puissances, conjecturer une formule que l'on démontre ensuite par récurrence.

Exemple 1 On considère la matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$.

- * Calculer A^2 en fonction de A:
- * Calculer A^3 SANS UTILISER LES COEFFICIENTS DE A (mais la relation précédente):
- * Peut-on conjecturer une relation donnant A^n en fonction de n et A? Est-elle valable pour n=0?
- * Montrons le résultat par récurrence:

On remarquera que dans les calculs, on utilise la relation établie pour A^2 .

CAPACITÉ 1 : calcul de A^n $(n \in \mathbb{N})$ par récurrence.

- Étape 1: Calculer les premières puissances (A^2 , puis A^3 ou A^4 si nécessaire) en fonction de A et n. ATTENTION!!
 - (1) Il est impératif d'exprimer A^2 , A^3 , voire A^4 en fonction de A pour pouvoir conjecturer une relation entre A^n , A et n.
- (2) SEUL le calcul de A^2 utilise les coefficients de A, mais (en général) pas celui de A^3 et des puissances suivantes Objectif de cette étape: on doit pouvoir déterminer intuitivement une relation entre A^n , n et A pour tout entier $n \ge ???$ (ATTENTION AU PREMIER RANG!)
- Étape 2: Preuve par récurrence de la conjecture de l'étape 1. (A noter que le calcul de A^2 de l'étape 1. sert à prouver l'hérédité)

Récurrence en utilisant un polynôme annulateur

Exemple 2 Soit
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
.
* Déterminer une relation entre A^2 , A et I .

* En déduire que pour tout $n \in \mathbb{N}$, il existe $a_n, b_n \in \mathbb{R}$ tels que: $A^n = a_n \, A + b_n \, I$.

* Expliciter A^n pour tout $n \in \mathbb{N}$ (on reconnaîtra une suite récurrente linéaire d'ordre deux).

POINT METHODE 1 : en trois étapes.

- Étape 1: Déterminer une relation polynômiale entre les premières puissances de A (jusqu'à A³ si nécessaire)
- Étape 2: Généralisation par récurrence.

ATTENTION!!

- (1) On démontre **l'existence** de deux suites (a_n) et (b_n) .
- (2) L'hérédité ne donne pas une expression directe de a_n et b_n en fonction de n, mais une relation de récurrence pour chaque suite.
- Étape 3: Calculer a_n et b_n en fonction de n.

2 Deuxième méthode: développer avec le binôme de Newton

POINT METHODE 2:

Si A s'écrit comme la somme de deux matrices: A=B+C qui **COMMUTENT** BC=CB, penser au binôme de Newton:

$$\forall n \in \mathbb{N} \,,\, A^n = (B+C)^n = \sum_{k=0}^n \binom{n}{k} B^k C^{n-k} = \sum_{k=0}^n \binom{n}{k} C^k B^{n-k} \,.$$

On rappelle le choix judicieux de la puissance...

2.1 Capacité exigible: calcul des puissances de $A=\alpha\,I+J,$ où $\alpha\in\mathbb{K}$ et J est une matrice nilpotente

Questions:

- 1. Peut-on appliquer le binôme de Newton? Justifier.
- 2. Qui "porte" la puissance k? n k?
- 3. Écrire la formule. Que remarque-t-on?

Exemple 3 Calculer les puissances de la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

$$*A = I + J$$
, avec $J = \dots$

$$*J^2 = \dots$$
 Donc $\forall k \geq 2, J^k = \dots$

* Pour tout entier $n, A^n = \dots$

2.2 Calcul des puissances de $A = \alpha I + B$, où $\alpha \in \mathbb{K}$ et $B \in \mathcal{M}_n(\mathbb{K})$ quelconque

Questions:

- 1. Peut-on appliquer le binôme de Newton? Justifier.
- 2. Qui "porte" la puissance k? n k?
- 3. Écrire la formule. Que remarque-t-on?

Exemple 4 (reprise de l'exemple 1.)

On se donne les matrices $B=\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$ et A=I+B. On rappelle (exemple 1) que $\forall n\in\mathbb{N}^*,\ B^n=7^{n-1}\,B$

Capacité exigible: calcul des puissances de A = L + M, où LM = ML = 0Questions:

- 1. Peut-on appliquer le binôme de Newton? Justifier.
- 2. Qui "porte" la puissance k? n k?
- 3. Écrire la formule. Que remarque-t-on?

Exemple 5 Soient les matrices:

$$A = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 1 & -2 & 1 \\ -3 & 3 & 0 \end{array} \right) \quad L = \left(\begin{array}{ccc} 2 & -1 & -1 \\ 0 & 0 & 0 \\ -2 & 1 & 1 \end{array} \right) \quad M = \left(\begin{array}{ccc} 0 & 0 & 0 \\ -1 & 2 & -1 \\ 1 & -2 & 1 \end{array} \right) \; .$$

1.
$$L^2 = \dots$$
 et $M^2 = \dots$

Donc $\forall n \in \mathbb{N}^*, L^n = \dots \text{ et } M^n = \dots$

2.
$$LM = \dots$$
 et $ML = \dots$

3 Application aux suites matricielles

Exemple 6 On considère deux suites (x_n) et (y_n) définies par leur premier terme x_0, y_0 et la relation de récurrence:

$$\forall n \in \mathbb{N}, \left\{ \begin{array}{lcl} x_{n+1} & = & \frac{1}{2} x_n + & \frac{1}{2} y_n \\ y_{n+1} & = & \frac{1}{2} y_n \end{array} \right.$$

* Étape 1: écriture matricielle.

Pour tout n, on pose $V_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$. Déterminer une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que: $\forall n \in \mathbb{N}, V_{n+1} = A V_n$.

* Étape 2: récurrence pour exprimer V_n en fonction de n.

On reconnaît une suite géométrique mais matricielle... La même formule que pour les suites géométriques usuelles s'applique, par contre, il faut refaire PROPREMENT la preuve par récurrence:

Remarque 1 On n'a pas besoin de connaître A^n dans cette preuve!!!

* Étape 3: calcul des puissances de A

Reprise de l'exemple 3:

* Étape 4: Revenir aux coefficients.

$$\forall n \in \mathbb{N},$$

$$V_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \frac{1}{2^n} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \iff \begin{cases} x_n = \dots \\ y_n = \dots \end{cases}$$