Suites réelles

BCPST 1C — Mme MOREL

1 Généralités
1.1 Définitions

Définition 1 :

On appelle suite réelle toute application que l’on note (Up)nen OU u.

u:N — R
noo— Uy
u, est appelé le terme d’indice n de la suite.

L’ensemble des suites réelles est noté RY.

Remarque 1 Il y a deux fagons de définir une suite:
(1) Ezxplicite: on peut calculer u,, directement en fonction de n.

1
Exemple 1 Vn € N, u,, = 2", suite harmonique: ¥Yn € N*, u,, = —.
n

(2) Par récurrence: on doit connaitre un ou plusieurs termes précédents pour calculer u,,.

Exemple 2 :

Ug = 1

Vn €N, upp1 =uy +2n

(2) Suite de Fibonacci: (F,) définie par Fy = Fy =1let Vn € N, Fj,10 = Fj,11 + F,.

(1) La suite (uy,)nen définie par: {

(ce type de définition implique lutilisation du principe de récurrence)

Une suite étant une application, on peut reprendre le vocabulaire des applications

1.2 Suites monotones

Définition 2 :

(1) Une suite (u,)nen est constante si: Vn € N, uy, = tpq1.

(2) Une suite (un)nen est stationnaire si elle est constante & partir d’un certain rang (APCR):
dpeN , YnZp o, Uy = Up.

il existe un rang p a partir duquel

Exemple 3 :
(1) La suite nulle (u, =0, Vn € N) est constante.

1
(2) On considére la suite (uy,)n>1 définie par: w, = [—], Vn > 1.
n

1
up=1letVn>2,0< — <1, donc u, = 0. Donc la suite u est stationnaire.
n

Définition 3 :

(1) Une suite (uy)nen est croissante (Tesp. strictement croissante) ssi: Vn € N, u, < upy1. (7€sp. Up < Upi1)

(2) Une suite (un)nen est décroissante (resp. strictement décroissante) ssi: Vn € N, u, > upy1. (1esp. uy > Upyr)
(3) Une suite (un)nen est monotone (resp. strictement monotone) ssi elle est croissante ou décroissante (resp. stricte-
ment croissante ou strictement décroissante).

Remarque 2 : ATTENTION!!
(1) Dire qu’une suite est monotone sur [0, +oo[ NE VEUT RIEN DIRE!!!
(2) Une suite n’est pas forcément monotone! Ezxemple: u, = (—1)", Vn € N.

CAPACITE EXIGIBLE 1 : Etude de la monotonie d’une suite.
e Une premiére méthode est:



calcul du SIGNE de la DIFFERENCE Up4+1 — Up, pour tout entier n € N

Exemple 4 Monotonie de la suite u,, = v/n.

OnaVneN w1 —u, =vn+1—+/n.

On peut déterminer le signe de plusieurs fagons, par exemple :

1. argument de monotonie de la fonction racine:
Vn € N, puisque la racine est sur [0, +oc[,onan<n+1= , donc la suite u est ...

2. quantité conjuguée:
— vV 1
neN, VTl ya= WAFI- VD (Wt 1+ Vi)
vn+1l++/n

Donc uy41 — un = 0, et la suite u est ...

e Une deuxiéme méthode est: Si (u,) ne s’annule jamais et est de signe constant:

comparaison du QUOTIENT Brtl a 1, pour tout entier n € N
U

n

Proposition 1 Soit une suite (up)nen telle que ’Vn eN, u, > 0| Alors:

Un+1

LRI Y 1, Vn € N.
un
Up+1

(1) u est croissante ssi

(2) u est décroissante ssi <1,vneN.

Un,

Preuve:

Remarque 3 Si u, <0, Vn € N, alors:

U . L
ntl < 1Vn €N et u est décroissante ssi ntl >1VneN.
un un

u est croissante ssi

Exemple 5 Etudions la monotonie de u, = /7, Vn € N:
Pour tout entier n non nul, on a bien u,, > 0, donc on peut étudier le quotient pour tout entier n non nul :

Unt1 _ vn+1
Uy, Vn

De plus, u; =1 > 0 = ug, donc u est croissante.

Remarque 4 : ATTENTION!
On peut TOUJOURS étudier le signe de la différence u,,+1 — 1y, mais on NE PEUT PAS TOUJOURS regarder le quotient

Un+1

. Il y a deux conditions pour cela: | u,, doit étre de signe constant et ne JAMAIS s’annuler

n

POINT METHODE 1 : quand utiliser le quotient pour 1’étude de la monotonie d’une suite?
Lorsqu’une suite (un)nen @ ses termes “multiplicatifs qui s’expriment en fonction de logarithme, exponentielle, factorielle,
ou puissances de n, il vaut mieux utiliser la méthode du quotient (si elle est possible!!!).

Exemple 6 :
(1) Etudions la monotonie de u, =ne™, Vn € N:
Vn € N*, u, > 0, donc on peut regarder le quotient pour tout entier n non nul:

Upy1  (n+1) entl B
Up, n nev n

De plus, u; = e > 0 = ug, donc la suite u est croissante.
(Si on regarde la différence: ¥n € N, upi1 —u, = (n+1)e"™ —ne™ = e (ne—n+e). La recherche du signe est donc plus
compliquée) . ..

. n+1)!
(2) Etude de la monotonie de la suite v définie par: v, = (2%) pour tout entier n.
Vn € N, v, > 0 donc on peut regarder le quotient:
Un+1
Un

Donc la suite v est croissante.



1.3 Suites bornées

Définition 4 Une suite (up)nen

(1) est minorée ssi il existe m € R tel que Vn € N, u, > m.

(2) est majorée ssi il existe M € R tel que Yn € N, u, < M.

(3) est bornée ssi elle est a la fois minorée et majorée: Im, M € R/¥Yn € N, m < u,, < M.

Exemple 7 :
(1) up = (=1)™ est bornée (u, =1 ou u, = —1).

(2) un, =mne™ est minorée (par 0), mais pas majorée.

Rappel 1 De fagon équivalente, on peut utiliser les valeurs absolues pour exprimer qu’une suite est bornée:

’ Une suite (un)nen est bornée ssi il existe M > 0 tel que Vn € N, |u,| < M‘

Remarque 5 : ATTENTION!
Minorant et majorant ne dépendent pas de n!!

Exemple 8 Si on a une suite v qui vérifie: u, < sinn Vn € N, en déduire que (u,) est majorée par sinn est FAUX! Par
contre, puisque u,, < sinn < 1Vn € N, on peut dire que la suite u est majorée par 1.

Remarque 6 :

(1) Sila suite (Up)n>n, est croissante alors elle est minorée par ......: Vn = ng, up > .......
(2) Sila suite (Upn)n>n, est décroissante alors elle est majorée par ......: Vn > ng, up, < .......

2 Suites convergentes (limite finie)

2.1 Deéfinition
Lecture graphique 1 :

Intuitivement, u,, tend vers ¢ € R signifie que u,, est trés proche de ¢ (autant que 'on veut) quand n est suffisamment grand:

Ve >0, AN eN/Vn = N | |u, —{] < e.

Pour tout voisinage de ¢ il existe un rang | u, est trés proche de ¢

(intervalle de la forme [¢ —e,¢+¢]) | a partir duquel (uy, est dans le voisinage de ¢ donné au départ)
Uup €l —el+te] = L—e<u,<l+e¢
= —e<u,—l<e = |u, —{| <e.

(On peut voir € comme la tolérance ou la marge d’erreur qu’on s’autorise autour de )

Définition 5 On dit que la suite (uy)nen converge vers un réel ¢ ssi:

Ve >0,IN €N/Vn > N, fu, — | <¢|

On note lim wu, =¢ ouu, — /L.
n—-+oo n—-+oo

Remarque 7 :

(1) On peut prendre une inégalité large |u,, — €| < €: ¢a ne change rien.
(2) N dépend de e: si on change €, N change aussi.

(3) Il y a existence du rang N, pas forcément unicité!



1
Exemple 9 : u, = —, Vn € N*. Montrons que u,, — O0:
n n—-+o0o

1
Ve > 0, on cherche N € N tel que Vn > N, |u, — {] = “ <e.
n

1 1
= — <& <= n > —. Donc on prend par exemple N = ...
n €

Réciproquement: Pour tout € > 0, posons N = ...

1
(Analyse) si N existe: ’
n

1 1 1
Alors,Vn > N, n > {J + 1> - >0, et puisque la fonction inverse est décroissante sur |0, +oo[, il vient: — < e.
€ € n

1
Conclusion: Ve > 0, N € N tel que Vn > N, |u,| = — < ¢, i.e la suite u converge vers 0.
n

Exemple 10 u,, = ¢", pour tout entier n € N. Montrer que si |¢| < 1, u converge vers 0.
e Sig=0:

Sig#0: Ve > 0, on cherche N € N tel que Vn > N, |u, —¢| = |¢"| = |q|" < e.
(Analyse) si N eziste: nln|q| < lne... A-t-on le droit de passer au In?

Ine
Donc n > ﬁ Pourquoi changer le sens de I'inégalité?
niq

Donc on prend N =...
Réciproqguement :

Proposition 2 Si une suite converge, alors sa limite est unique.

Preuve:

Remarque 8 : ATTENTION!

. _ 1
La limite ne dépend pas de n! Ecrire v, — — n’a aucun sens!
n—4+oco n

Théoréme 1 Une suite (up)nen converge vers £ ssi les sous-suites (uop)nen €t (Usnt1)nen convergent vers £.

Preuve:
Supposons que (uy,)nen converge vers £:

Ve>0,INeN/Nn=2 N, |u, — ¢ <e.

Donc: Vp > N,



Supposons que (ug,)nen €t (Uan+1)nen convergent vers £:

Ve >0,3N e NVp>= Ny, |ugp, — 0] <e
P

etVs>0,3N2€N/Vp N2,|’LL2p+1—€‘<E

On pose N = max(2Ny,2N;y + 1), alors Vn > N:

xsinestpair, n=2p > N 2 2N; = p > N1 = |uy, — €] = |ugp — ¢ < e.

% sin est impair,n =2p+12>2 N 22No+1=p > No = |u, — ] = |ugpt1 — ] <e.
Conclusion: ¥n > N, |u, — | < &, donc (up)nen converge vers £.

POINT METHODE 2 A quoi servent les sous-suites?
A étudier la nature d’une suite...

Exercice 1 :

n
(1) On considére la suite (Sy)p>1 ,00Vn =1, S, = Z . Cette suite est appelée série harmonique.
k=1

T =

Montrer que Vn € N, Sy, — S,, > —. En déduire que (5,,) ne converge pas.

N =

n+(—1)" .
(=1) , pour tout entier n.
n

n—(-1)

(2) Etudier la nature de la suite définie par: u, =

2.2 Propriétés des suites convergentes

Proposition 3 Toute suite convergente est bornée.

Preuve:



Remarque 9 : La RECIPROQUE est FAUSSE!! Bornée % convergente.

Contre-exemple: u,, = (—1)", ¥n € N. On a déja vu que cette suite est bornée. Montrons que cette suite ne converge pas.
Raisonnons par ’absurde: supposons que (u,,) converge vers un réel £.

Alors que peut-on dire des sous suites (U2, )nen €t (U2nt1)nen?

Conclusion: (uy,)nen ne converge pas.

Proposition 4 (admise):
Si (Up)nen converge vers a et b < a < c¢ alors b < u, < c APCR (a partir d’un certain rang).

Corollaire 1 Soit une suite (u,)nen qui converge vers £.

(1) Si € >0 alors up, >0 APCR, et u, > g APCR.
(2) Si € <0 alors u, <0 APCR.

Preuve:

2.3 Opérations sur les limites

Proposition 5 Soient (uy)nen et (Vn)nen deux suites convergeant respectivement vers £ et ¢'.
(1) La somme (u, + vy )nen converge vers £+ €. (admis)

(2) Soit A € R. Le produit (Aup)nen converge vers A{. (admis)

(8) Le produit (uy, vy)nen converge vers £4'. (admis)

(4) La suite (|un|)nen converge vers |¢].

Preuve: (4)

Proposition 6 (admise): Soit (u,)nen convergeant vers £ £ 0.

1 1
Alors il existe un rang Ny € N tel que VYn > Ny, u, # 0 et () converge vers .
Un / n>Ny



Remarque 10 Le Corollaire 1 assure que la suite est non nulle APCR.

Théoréeme 2 (Passage a la limite dans les inégalités):
Soient (un)nen et (Un)nen deuz suites convergeant respectivement vers € et €.
SiVn € N, u, < v, alors £ < 0. (admis)

Remarque 11 :
(1) 1 suffit d’avoir u,, < v, APCR
(2) si Vn € N, u,, < vy, alors en passant a la limite, £ < ¢

En passant a la limite, une inégalité stricte devient LARGE

1 1
exemple: Vn € N*| Y < — donc en passant a la limite: OO!!!

(3) ATTENTION! La convergence des suites est une HYPOTHESE!
Dire que u,, < v, APCR implique lim u,, < limwv,, est FAUX: on doit montrer AVANT que les deux suites convergent.

Théoréme 3 (Théoréme d’encadrement)
Soient (Un)neN, (Un)nen €t (Wp)nen trois suites vérifiant:

U < Up < Wy, (APCR) et (Un)nen et (Wn)nen convergent vers la méme limite £.

Alors (un)nen converge vers £.

Preuve:

CAPACITE EXIGIBLE 2 : utilisation des encadrements pour la convergence des suites définies avec 3.

n
. n
Exemple 11 Etudier la convergence de la suite u définie par: Vn > 1, u,, = E e
n
k=1

Meéthode: pour encadrer un signe Y, on encadre le terme général et on somme les encadrements:

Corollaire 2 Si (uy,) converge vers 0 et (vy,) est bornée (APCR) alors (up, vy,) converge vers 0.



Preuve:

1
Exemple 12 (sinn) est bornée et — — 0, donc il 0

n n—+oo n n—-+o00

2.4 Convergence des suites monotones

Théoréeme 4 (théoréme de la limite monotone):
(1) Toute suite croissante et majorée converge.
(2) Toute suite décroissante et minorée converge.

Remarque 12 :

(1) Ce théoréme donne un résultat qualitatif (existence de la limite finie = convergence) et non quantitatif (la valeur de la
limite n’est pas connue).

(dans les exercices, quand la convergence d’une suite est demandée, sans la valeur exacte de la limite, il faudra penser
a ce théoréme)

Type de raisonnement faux: (u,) est décroissante et minorée par 0 donc u converge : FAUX, ON NE CONNAIT
PAS LA LIMITE!

(2) Ce théoréme donne un majorant ou un minorant de la limite.

En effet, par exemple, si u est décroissante et minorée par 0 (Vn € N*| u,, > 0) alors u converge vers £ et en passant a la
limite: ¢ > 0 (inégalité LARGE!).

(3) On verra en exercice comment calculer la limite ¢ & partir d’une relation de récurrence sur la suite.

Preuve:
(1) Soit (uy,) une suite croissante et majorée. Montrons que | (u,,) converge vers £ = sup u,
neN
On pose U = {u,,n € N}. D’aprés les hypothéses, U est une partie de R, donc
sup U = sup u,, existe. On note ¢ = sup u, et on a donc: Vn € N, u,, ...~£
neN neN

De plus, £ est le plus petit des majorants: Ve > 0, 3N € N tel que £ — e < uy.
Or la suite est croissante donc Vn > N, u,, > uy > € —¢

Finalement, Vn > N, £ —e < u,, < £ < {4+ ¢, soit |u, — ] < e.

Donc (u,,) converge vers £.

(2) De méme, si (u,) est une suite décroissante et minorée, on montre que | (u,) converge vers £ = inf wu,
neN

1
Exemple 13 On considére la suite u,, = Z i + — Vn e N~

Monotonie de u: Vn > 1, étudie -t-on la dlfference ou le quotient?

Donc (uy,) est décroissante.
De plus, Vn > 1, u,, > 0, i.e. (u,) est minorée.
Conclusion: par le théoréme de la limite monotone, la suite u converge. Que peut-on dire de sa limite?

Définition 6 Deux suites (un)nen et (Un)nen sont adjacentes si:
* (Un)nen est croissante,
* (Un)nen est décroissante,

*A”:”"’“”n?ooo‘

Théoréeme 5 Si (un)nen et (Un)nen sont adjacentes alors elles convergent vers la méme limite £ € R et:
VneN, u, << v,.



Preuve:

n n
1 1 1
Exemple 14 Etude des suites: u, = E —+ —ctuv, = — Vn € N*.

k- nln — k!
* Exemple 13: (u,) est décroissante.
*Vn 21, vy — vy = m > 0, donc (v,,) est croissante.
* Ap =0, —U,=—— —> 0.

nln n—+oo

Conclusion: les suites sont adjacentes et convergent vers la méme limite. (il s’agit du nombre de Neper ¢)

3 Limites infinies

3.1 Définition
Lecture graphique 2 :



Intuitivement, w,, —+> +oo0 signifie que u, est trés grand (aussi grand que l'on veut) quand n est suffisamment grand:
n—-+oo

VA ER, ANEN/Nn =N | u, > A

Pour tout "voisinage de +00" | il existe un rang | wu, est trés grand
(au dessus de tout seuil) a partir duquel (up, est au dessus du seuil donné au départ)

Définition 7 :
(1) On dit qu’une suite (u,)nen diverge vers +oo si:

WAGKHNGNNn}NﬂM>A‘

On note lim wu, = +o00 ouu, —> —+oo.
n—-+o0o n——+oo

(2) On dit qu’une suite (u,)nen diverge vers —oo si:

[VAER, AN eN/¥n> N, u, < A|

On note lim wu, = —00 ouu, —> —0O.
n—-+o0o n—-+oo

(3) On dit qu’une suite diverge si elle diverge vers une limite infinie ou si elle n’a pas de limite.
Remarque 13 Comme dans le cas des limites finies, prendre des inégalités strictes (u, > A) ne change rien.

Exemple 15 u,, = ¢" diverge vers 400 si ¢ > 1.

3.2 Relation d’ordre et suites monotones

Proposition 7 Soient deux suites (un)nen et (Un)nen telles que: Vn € N, u,, < v,. (APCR suffit)
(1) si (up)nen diverge vers 400 alors (v, )nen diverge aussi vers +0o.
(2) si (Up)nen diverge vers —oo alors (un)nen diverge aussi vers —oo.

Preuve:

Remarque 14 : ATTENTION!
(1) On n’a pas besoin d’un encadrement: une seule inégalité suffit:

Exemple 16 Vn > 1, n" =nx...xn>2nx1x...x1=n. Donc lim n" = +co.
— N—— n—+o00

n fois (n—1) fois

(2) L’inégalité doit étre dans le bon sens:

Exemple 17 Vn € N*, n2>1=n> %

. . . . 1
On a bien lim n = 400, mais ce n’est pas pour autant que lim — = +oo!!
n—-+oo n—+oo n

Théoréme 6 :
(1) Toute suite croissante et non majorée diverge vers +0oo.
(2) Toute suite décroissante et non minorée diverge vers —oo.

Preuve:

10



Exemple 18 Retour sur la série harmonique:

3.3 Opérations sur les limites

Pour déterminer la limite de la somme, du produit ou du quotient de deux suites admettant des limites finies ou non, il suffit
de lire les tableaux suivants.

F.I signifie "Forme indéterminée”: les théorémes ne permettant pas de déterminer la limite, on ne peut conclure. Il va donc
falloir lever lindétermination par d’autres méthodes.

¢ Somme:
+ eR| —oo | 400
e
{eR | 4+40 | —00 | +00
—00 —00 -0 | F.I
+00 +00 FI |4+
e Produit:
X —00 | +00
e
(<0 | 400 | —0
{= F.I F.I

e Quotient:
U, | £#0 | —oc0 | 400 (=0t {=0" (=0
(4, >0 APCR) | (u,,<0 APCR)

1 1

— - 0 0 400 —00 n’a pas de limite
Upy 4

e Conclusion: Il y a quatre types de formes indéterminées:

(+00) + (=00); 0 x 00;

)

oo

813

CAPACITE EXIGIBLE 3 : Comment lever une indétermination?

1. Mettre en facteur le terme de plus haut degré:

3 2 _ 1
% (F.I de la forme g)

Puisque n tend vers 400, n est suffisamment grand, donc n > 0 (n # 0 suffit), donc:

Exemple 19 u, =

1 1 1 1
Or lim —=0et lim — =0,donc lim 1+ ———=1.
n—-4+oo n n—-+4oo n3 n—4+oo n n3
2
De méme, lim 1+ — =1.
n—-+oo n

1+1 -4
Conclusion: lim ——2->"—
n

=1 >0}, donc lim wu, = +oo.
—400 1"1‘% 7 n—-+00 " +

Exemple 20 v, = +v/n+1—/n (F.Ide la forme (+00) 4+ (—o0))
Puisque n tend vers +oc0, n est suffisamment grand, donc n > 0, donc:

oy = n<1+;>—f=\/ﬁ<m—1>.

11



1 1 1
Or lim — =0donc lim 1+==+v1=1,donc lim (\ 14— — 1) = 0, et on récupére une F.I de la forme
n—-4+oo n n—4oo n n—-4o0o n

0xoo0...
Cette méthode n’est donc pas adaptée, car I'indétermination provient du signe ”—” entre les racines. . .

. Quantité conjuguée:

Or lim vVn+1+4+/n =400, donc lim wv, =0.
n—-+o0o n—-+o0o
. Croissances comparées:

Proposition 8 Vo, >0, Va > 1,

Inn)? n® a”
lim ( ) =0 lim — =0 lim — =0
n—o+too N n—+oo a™ n—+oo n!

nlna

Rappel 2 a" =e¢ (exponentielle de base a), donc pour I'exponentielle (de base e):

n
lim — =0 lim n% ™" =0
n—-+oo n' n—-+oo
Remarque 15 On prend aussi la notation u, << v, si lim — =0 qui se lit: “v,, 'emporte sur u,,”. Donc:

n—-+o0o Un

(Inn)? << n® << a™ << n!
(la factorielle 'emporte sur les exponentielles qui 'emportent sur les puissances qui 'emportent sur les logarithmes)

an

Penser aussi aux inverses: lim — = 4o0.
n——+oo N

Preuve:

B
Preuve de lim (Inn)

n—+oo N
o4

. n
Preuve de lim — =0:
n—+oo ™
«

Posons u, = — pour tout entier n. Vn € N, u, > 0, et montrons que la limite de
a

= 0 pour plus tard...

Un+1

1
quand n tend vers +oo est —:
n a

1 1

Puisque — < 1, il existe un réel g tel que 0 < — < g < 1let Bnt1 < ¢ APCR. Donc uy4+1 < qu, APCR (Vn > N).
a a n

Donc, par récurrence: ¥n > N, u, < ¢" N uy.

Conclure sur la limite de u:

Remarque 16 ATTENTION & “emporte” TROP RAPIDE!!

12



Inn

Exemple 21 u,, = n’est pas une croissance comparée...

Remarque 17 : ATTENTION!
Pour les suites de la forme a’: PASSER A L’EXPONENTIELLE!!
Sinon, le risque est de ne pas voir I'indétermination et d’écrire de grosses bétises...

1 n
Exemple 22 u, = (1 + ) Vn € N*.
n

Version fausse: lim 14+ —=1et 1" =1Vn donc lim u, =1...
n—-+oo n n—-+o0o

1
Version juste: Vn € N*, u,, = e" m(1+%), lim In (1 + > =1In1=0, il y a donc indétermination!!
n—-+oo n

4. Utilisation des équivalents

4 Suites équivalentes

4.1 Deéfinition

Définition 8 Soient (un)nen et (Vn)nen deux suites qui ne s’annulent pas (au moins APCR).

On dit que (uy,) est équivalente a (v,) et l’on note lorsque:

. Un
lim —=1.
n—-+oo (S

Remarque 18 Lorsque (u,) est équivalente a (v,,), (v,) est aussi équivalente & (u,) donc, sans précision d’ordre, on peut
dire: (uy) et (v,) sont équivalentes.

Remarque 19 Soit £ € R*, u,, ~ ¢ signifie ...
Si £ =0, |NE JAMAIS écrire u,, ~ 0! |

Exemple 23 : le plus haut degré ’emporte en +oo.
(1) 2n% +n + 1 ~ 2n2, en effet:

2) =5nd +n?—1~...
(
(3) Tout polynéme est équivalent en +o0o 4 son mondéme de plus haut degré:

-1
apn? +ap 1P + ...+ ain+ag ~ apn? , avec ap # 0

En effet:

Exemple 24 : équivalents usuels.

Soit (u,) non nulle APCR et telle que liar_l u, = 0| alors:
n—-+0oo
02
i)~y tan(un) ~ wn - cos(un) = 1~ =2,

e —1~wu, In(l4wu,) ~u, \/1—|—u"—1~% (1+up)® =1~ quy,, Ya € R*

4.2 Propriétés

Proposition 9 :
(1) Transitivité: si u, ~ v, et v, ~ wy, alors u, ~ w,.
(2) Multiplication par un réel non nul: pour tout A € R*, si u, ~ v, alors A, ~ Av,.
(3) Produit: si u, ~ w, et v, ~ 1y, alors w, v, ~ Wy, Ty.
(4) Quotient: si u, ~ w, et v, ~ r, alor. Un  Un
Un, Tn
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Preuve: Il s’agit d’utiliser les opérations sur les suites convergentes:

POINT METHODE 3 :
Dans un calcul de limite, on peut remplacer, sans hésiter, une suite par I'un de ses équivalents dans un produit, un quotient.

Exemple 25 :
2n? +5n — 1

(1) Quotient de deux polynomes: Gn-1){—n)

2) nsin(n;; L.

Proposition 10 (composées):

(1) Valeur absolue: u, ~ v, = |u,| ~ |v,].

(2) Puissance entiére: u, ~ v, = uf, ~vf, pour tout p € N.

(3) Puissance réelle constante: u, ~ v, = u® ~ v, pour tout « € R. (u, >0 et v, >0 APCR)

n’

Preuve:

POINT METHODE 4 :

Dans un calcul de limite, on peut remplacer, sans hésiter, une suite par 'un de ses équivalents dans une élévation & une
) ’ ’
puissance constante.

Exemple 26 :

(1) (n+2)vn?2+n+1

(n? +n+1)°

(2) 2n + 3

Remarque 20 ATTENTION: ON NE SOMME PAS LES EQUIVALENTS !
contre-exemple: n? +1 ~n? et —n? —3 ~ —n2 MAIS n? +1 —n? —3 ~n? — n??

Remarque 21 ATTENTION aux EXPONENTIELLES et au LOGARITHME :
2 2
xn24+n~n?MAIS e 7 ~ e ?
x14+e " ~1MAISIn(l4+e ™) ~1Inl?

En fait:
* lim u, —v, =0=¢e“" ~ e,
n—-+4oo
* Si Uy, ~ v, avec Up,v, > 0et lim v, =L #1 (avec L € Ry U {+o0}) alors In(uy) ~ In(v,).

n—-+oo
POINT METHODE 5 Dans un calcul de limite, dans une somme ou une différence ou encore pour composer avec une

fonction (comme l'exponentielle, le logarithme, le sinus, ..., mais pas 1’élévation & une puissance constante), une étude
particuliére s’impose car il n’existe pas de résultat général.
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4.3 Applications
4.3.1 Recherche de limite

Proposition 11 Si (u,) converge vers £, ot £ # 0 alors u, ~ £.
Théoréme 7 Siu, ~v, et lim v, =L € RU{-o00,+00}, alors lim wu, =L.
n—-+4oo n—-+oo

Preuve:

Exemple 27 :

sin()
(1) ==
en —1

4.3.2 Recherche de signe
Théoréme 8 Si u, ~ v, alors u, et v, sont de méme signe APCR.

Preuve:
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