
Suites réelles

BCPST 1C – Mme MOREL

1 Généralités

1.1 Définitions
Définition 1 :

On appelle suite réelle toute application u : N −→ R
n 7→ un

que l’on note (un)n∈N ou u.

un est appelé le terme d’indice n de la suite.
L’ensemble des suites réelles est noté RN.

Remarque 1 Il y a deux façons de définir une suite:
(1) Explicite: on peut calculer un directement en fonction de n.

Exemple 1 ∀n ∈ N, un = 2n, suite harmonique: ∀n ∈ N∗, un =
1

n
.

(2) Par récurrence: on doit connaître un ou plusieurs termes précédents pour calculer un.

Exemple 2 :

(1) La suite (un)n∈N définie par:
{
u0 = 1
∀n ∈ N , un+1 = un + 2n

(2) Suite de Fibonacci: (Fn) définie par F0 = F1 = 1 et ∀n ∈ N, Fn+2 = Fn+1 + Fn.

(ce type de définition implique l’utilisation du principe de récurrence)

Une suite étant une application, on peut reprendre le vocabulaire des applications

1.2 Suites monotones
Définition 2 :
(1) Une suite (un)n∈N est constante si: ∀n ∈ N, un = un+1.
(2) Une suite (un)n∈N est stationnaire si elle est constante à partir d’un certain rang (APCR):
∃ p ∈ N︸ ︷︷ ︸

il existe un rang p

, ∀n > p︸ ︷︷ ︸
à partir duquel

, un = up.

Exemple 3 :
(1) La suite nulle (un = 0, ∀n ∈ N) est constante.
(2) On considère la suite (un)n>1 définie par: un = b 1

n
c, ∀n > 1.

u1 = 1 et ∀n > 2, 0 <
1

n
< 1, donc un = 0. Donc la suite u est stationnaire.

Définition 3 :
(1) Une suite (un)n∈N est croissante (resp. strictement croissante) ssi: ∀n ∈ N, un 6 un+1. (resp. un < un+1)
(2) Une suite (un)n∈N est décroissante (resp. strictement décroissante) ssi: ∀n ∈ N, un > un+1. (resp. un > un+1)
(3) Une suite (un)n∈N est monotone (resp. strictement monotone) ssi elle est croissante ou décroissante (resp. stricte-
ment croissante ou strictement décroissante).

Remarque 2 : ATTENTION!!
(1) Dire qu’une suite est monotone sur [0,+∞[ NE VEUT RIEN DIRE!!!
(2) Une suite n’est pas forcément monotone! Exemple: un = (−1)n, ∀n ∈ N.

CAPACITÉ EXIGIBLE 1 : Etude de la monotonie d’une suite.
• Une première méthode est:
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calcul du SIGNE de la DIFFÉRENCE un+1 − un, pour tout entier n ∈ N

Exemple 4 Monotonie de la suite un =
√
n.

On a ∀n ∈ N, un+1 − un =
√
n+ 1−

√
n.

On peut déterminer le signe de plusieurs façons, par exemple :

1. argument de monotonie de la fonction racine:
∀n ∈ N, puisque la racine est sur [0,+∞[, on a n 6 n+ 1⇒ , donc la suite u est . . .

2. quantité conjuguée:

∀n ∈ N ,
√
n+ 1−

√
n =

(
√
n+ 1−

√
n) (
√
n+ 1 +

√
n)√

n+ 1 +
√
n

= . . .

Donc un+1 − un > 0, et la suite u est . . .

• Une deuxième méthode est: Si (un) ne s’annule jamais et est de signe constant:

comparaison du QUOTIENT
un+1

un
à 1, pour tout entier n ∈ N

Proposition 1 Soit une suite (un)n∈N telle que ∀n ∈ N, un > 0 Alors:

(1) u est croissante ssi
un+1

un
> 1, ∀n ∈ N.

(2) u est décroissante ssi
un+1

un
6 1, ∀n ∈ N.

Preuve:

Remarque 3 Si un < 0, ∀n ∈ N, alors:
u est croissante ssi

un+1

un
6 1 ∀n ∈ N et u est décroissante ssi

un+1

un
> 1 ∀n ∈ N.

Exemple 5 Étudions la monotonie de un =
√
n, ∀n ∈ N:

Pour tout entier n non nul, on a bien un > 0, donc on peut étudier le quotient pour tout entier n non nul :

un+1

un
=

√
n+ 1√
n

= . . .

De plus, u1 = 1 > 0 = u0, donc u est croissante.

Remarque 4 : ATTENTION!
On peut TOUJOURS étudier le signe de la différence un+1 − un, mais on NE PEUT PAS TOUJOURS regarder le quotient
un+1

un
. Il y a deux conditions pour cela: un doit être de signe constant et ne JAMAIS s’annuler

POINT MÉTHODE 1 : quand utiliser le quotient pour l’étude de la monotonie d’une suite?
Lorsqu’une suite (un)n∈N a ses termes “multiplicatifs“ qui s’expriment en fonction de logarithme, exponentielle, factorielle,
ou puissances de n, il vaut mieux utiliser la méthode du quotient (si elle est possible!!!).

Exemple 6 :
(1) Étudions la monotonie de un = n en, ∀n ∈ N:
∀n ∈ N∗, un > 0, donc on peut regarder le quotient pour tout entier n non nul:

un+1

un
=

(n+ 1) en+1

n en
= . . .

De plus, u1 = e > 0 = u0, donc la suite u est croissante.
(Si on regarde la différence: ∀n ∈ N, un+1 − un = (n+ 1) en+1 − n en = en (n e− n+ e). La recherche du signe est donc plus
compliquée) . . .

(2) Étude de la monotonie de la suite v définie par: vn =
(n+ 1)!

2n
pour tout entier n.

∀n ∈ N, vn > 0 donc on peut regarder le quotient:
vn+1

vn
= . . .

Donc la suite v est croissante.
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1.3 Suites bornées
Définition 4 Une suite (un)n∈N
(1) est minorée ssi il existe m ∈ R tel que ∀n ∈ N, un > m.
(2) est majorée ssi il existe M ∈ R tel que ∀n ∈ N, un 6M .
(3) est bornée ssi elle est à la fois minorée et majorée: ∃m,M ∈ R/∀n ∈ N , m 6 un 6M .

Exemple 7 :
(1) un = (−1)n est bornée (un = 1 ou un = −1).
(2) un = n en est minorée (par 0), mais pas majorée.

Rappel 1 De façon équivalente, on peut utiliser les valeurs absolues pour exprimer qu’une suite est bornée:
Une suite (un)n∈N est bornée ssi il existe M > 0 tel que ∀n ∈ N, |un| 6M

Remarque 5 : ATTENTION!
Minorant et majorant ne dépendent pas de n!!

Exemple 8 Si on a une suite u qui vérifie: un 6 sinn ∀n ∈ N, en déduire que (un) est majorée par sinn est FAUX! Par
contre, puisque un 6 sinn 6 1 ∀n ∈ N, on peut dire que la suite u est majorée par 1.

Remarque 6 :
(1) Si la suite (un)n>n0

est croissante alors elle est minorée par . . . . . .: ∀n > n0, un > . . . . . ..
(2) Si la suite (un)n>n0

est décroissante alors elle est majorée par . . . . . .: ∀n > n0, un 6 . . . . . ..

2 Suites convergentes (limite finie)

2.1 Définition
Lecture graphique 1 :

Intuitivement, un tend vers ` ∈ R signifie que un est très proche de ` (autant que l’on veut) quand n est suffisamment grand:
∀ε > 0, ∃N ∈ N/∀n > N |un − `| < ε.

Pour tout voisinage de ` il existe un rang un est très proche de `
(intervalle de la forme [`− ε, `+ ε]) à partir duquel (un est dans le voisinage de ` donné au départ)

un ∈ [`− ε, `+ ε] ⇐⇒ `− ε < un < `+ ε
⇐⇒ −ε < un − ` < ε ⇐⇒ |un − `| < ε.

(On peut voir ε comme la tolérance ou la marge d’erreur qu’on s’autorise autour de `)

Définition 5 On dit que la suite (un)n∈N converge vers un réel ` ssi:

∀ε > 0, ∃N ∈ N/∀n > N , |un − `| < ε

On note lim
n→+∞

un = ` ou un −→
n→+∞

`.

Remarque 7 :
(1) On peut prendre une inégalité large |un − `| 6 ε: ça ne change rien.
(2) N dépend de ε: si on change ε, N change aussi.
(3) Il y a existence du rang N , pas forcément unicité!
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Exemple 9 : un =
1

n
, ∀n ∈ N∗. Montrons que un −→

n→+∞
0:

∀ε > 0, on cherche N ∈ N tel que ∀n > N , |un − `| =
∣∣∣∣ 1n
∣∣∣∣ < ε.

(Analyse) si N existe:
∣∣∣∣ 1n
∣∣∣∣ =

1

n
< ε ⇐⇒ n >

1

ε
. Donc on prend par exemple N = . . .

Réciproquement: Pour tout ε > 0, posons N = . . .

Alors, ∀n > N , n >

⌊
1

ε

⌋
+ 1 >

1

ε
> 0, et puisque la fonction inverse est décroissante sur ]0,+∞[, il vient:

1

n
< ε.

Conclusion: ∀ε > 0, ∃N ∈ N tel que ∀n > N , |un| =
1

n
< ε, i.e la suite u converge vers 0.

Exemple 10 un = qn, pour tout entier n ∈ N. Montrer que si |q| < 1, u converge vers 0.
• Si q = 0:

Si q 6= 0: ∀ε > 0, on cherche N ∈ N tel que ∀n > N , |un − `| = |qn| = |q|n < ε.
(Analyse) si N existe: n ln |q| < ln ε... A-t-on le droit de passer au ln?

Donc n >
ln ε

ln |q|
... Pourquoi changer le sens de l’inégalité?

Donc on prend N = . . .
Réciproquement :

Proposition 2 Si une suite converge, alors sa limite est unique.

Preuve:

Remarque 8 : ATTENTION!

La limite ne dépend pas de n! Écrire un −→
n→+∞

1

n
n’a aucun sens!

Théorème 1 Une suite (un)n∈N converge vers ` ssi les sous-suites (u2n)n∈N et (u2n+1)n∈N convergent vers `.

Preuve:
⇒ Supposons que (un)n∈N converge vers `:

∀ε > 0 , ∃N ∈ N/∀n > N , |un − `| 6 ε .

Donc: ∀p > N ,
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⇐ Supposons que (u2n)n∈N et (u2n+1)n∈N convergent vers `:

∀ε > 0 , ∃N1 ∈ N/∀p > N1 , |u2p − `| < ε

et ∀ε > 0 , ∃N2 ∈ N/∀p > N2 , |u2p+1 − `| < ε

On pose N = max(2N1, 2N2 + 1), alors ∀n > N :
∗ si n est pair, n = 2p > N > 2N1 ⇒ p > N1 ⇒ |un − `| = |u2p − `| < ε.
∗ si n est impair, n = 2p+ 1 > N > 2N2 + 1⇒ p > N2 ⇒ |un − `| = |u2p+1 − `| < ε.
Conclusion: ∀n > N , |un − `| < ε, donc (un)n∈N converge vers `.

POINT MÉTHODE 2 A quoi servent les sous-suites?
A étudier la nature d’une suite...

Exercice 1 :

(1) On considère la suite (Sn)n>1 , où ∀n > 1, Sn =

n∑
k=1

1

k
. Cette suite est appelée série harmonique.

Montrer que ∀n ∈ N, S2n − Sn >
1

2
. En déduire que (Sn) ne converge pas.

(2) Étudier la nature de la suite définie par: un =
n+ (−1)n

n− (−1)n
, pour tout entier n.

2.2 Propriétés des suites convergentes
Proposition 3 Toute suite convergente est bornée.

Preuve:
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Remarque 9 : La RÉCIPROQUE est FAUSSE!! Bornée 6⇒ convergente.
Contre-exemple: un = (−1)n, ∀n ∈ N. On a déjà vu que cette suite est bornée. Montrons que cette suite ne converge pas.
Raisonnons par l’absurde: supposons que (un) converge vers un réel `.
Alors que peut-on dire des sous suites (u2n)n∈N et (u2n+1)n∈N?

Conclusion: (un)n∈N ne converge pas.

Proposition 4 (admise):
Si (un)n∈N converge vers a et b < a < c alors b < un < c APCR (à partir d’un certain rang).

Corollaire 1 Soit une suite (un)n∈N qui converge vers `.

(1) Si ` > 0 alors un > 0 APCR, et un >
`

2
APCR.

(2) Si ` < 0 alors un < 0 APCR.

Preuve:

2.3 Opérations sur les limites
Proposition 5 Soient (un)n∈N et (vn)n∈N deux suites convergeant respectivement vers ` et `′.
(1) La somme (un + vn)n∈N converge vers `+ `′. (admis)
(2) Soit λ ∈ R. Le produit (λun)n∈N converge vers λ `. (admis)
(3) Le produit (un vn)n∈N converge vers ` `′. (admis)
(4) La suite (|un|)n∈N converge vers |`|.

Preuve: (4)

Proposition 6 (admise): Soit (un)n∈N convergeant vers ` 6= 0.

Alors il existe un rang N0 ∈ N tel que ∀n > N0, un 6= 0 et
(

1

un

)
n>N0

converge vers
1

`
.
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Remarque 10 Le Corollaire 1 assure que la suite est non nulle APCR.

Théorème 2 (Passage à la limite dans les inégalités):
Soient (un)n∈N et (vn)n∈N deux suites convergeant respectivement vers ` et `′.
Si ∀n ∈ N, un 6 vn alors ` 6 `′. (admis)

Remarque 11 :
(1) Il suffit d’avoir un 6 vn APCR
(2) si ∀n ∈ N, un < vn, alors en passant à la limite, ` 6 `′:

En passant à la limite, une inégalité stricte devient LARGE

exemple: ∀n ∈ N∗,
1

n+ 1
<

1

n
, donc en passant à la limite: 0 6 0!!!

(3) ATTENTION! La convergence des suites est une HYPOTHÈSE!
Dire que un 6 vn APCR implique limun 6 lim vn est FAUX: on doit montrer AVANT que les deux suites convergent.

Théorème 3 (Théorème d’encadrement)
Soient (un)n∈N, (vn)n∈N et (wn)n∈N trois suites vérifiant:

vn 6 un 6 wn (APCR) et (vn)n∈N et (wn)n∈N convergent vers la même limite `.

Alors (un)n∈N converge vers `.

Preuve:

CAPACITÉ EXIGIBLE 2 : utilisation des encadrements pour la convergence des suites définies avec
∑
.

Exemple 11 Étudier la convergence de la suite u définie par: ∀n > 1, un =

n∑
k=1

n

k + n2
.

Méthode: pour encadrer un signe
∑
, on encadre le terme général et on somme les encadrements:

Corollaire 2 Si (un) converge vers 0 et (vn) est bornée (APCR) alors (un vn) converge vers 0.
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Preuve:

Exemple 12 (sinn) est bornée et
1

n
−→

n→+∞
0, donc

sinn

n
−→

n→+∞
0

2.4 Convergence des suites monotones
Théorème 4 (théorème de la limite monotone):
(1) Toute suite croissante et majorée converge.
(2) Toute suite décroissante et minorée converge.

Remarque 12 :
(1) Ce théorème donne un résultat qualitatif (existence de la limite finie = convergence) et non quantitatif (la valeur de la
limite n’est pas connue).
(dans les exercices, quand la convergence d’une suite est demandée, sans la valeur exacte de la limite, il faudra penser
à ce théorème)
Type de raisonnement faux: (un) est décroissante et minorée par 0 donc u converge vers 0 : FAUX, ON NE CONNAIT
PAS LA LIMITE!!
(2) Ce théorème donne un majorant ou un minorant de la limite.
En effet, par exemple, si u est décroissante et minorée par 0 (∀n ∈ N∗, un > 0) alors u converge vers ` et en passant à la
limite: ` > 0 (inégalité LARGE!).
(3) On verra en exercice comment calculer la limite ` à partir d’une relation de récurrence sur la suite.

Preuve:
(1) Soit (un) une suite croissante et majorée. Montrons que (un) converge vers ` = sup

n∈N
un

On pose U = {un, n ∈ N}. D’après les hypothèses, U est une partie de R, donc
supU = sup

n∈N
un existe. On note ` = sup

n∈N
un et on a donc: ∀n ∈ N, un . . . `

De plus, ` est le plus petit des majorants: ∀ε > 0, ∃N ∈ N tel que `− ε < uN .
Or la suite est croissante donc ∀n > N , un > uN > `− ε
Finalement, ∀n > N , `− ε < un 6 ` < `+ ε, soit |un − `| < ε.
Donc (un) converge vers `.
(2) De même, si (un) est une suite décroissante et minorée, on montre que (un) converge vers ` = inf

n∈N
un

Exemple 13 On considère la suite un =

n∑
k=0

1

k!
+

1

n!n
∀n ∈ N∗.

Monotonie de u: ∀n > 1, étudie -t-on la différence ou le quotient?

Donc (un) est décroissante.
De plus, ∀n > 1, un > 0, i.e. (un) est minorée.
Conclusion: par le théorème de la limite monotone, la suite u converge. Que peut-on dire de sa limite?

Définition 6 Deux suites (un)n∈N et (vn)n∈N sont adjacentes si:
∗ (un)n∈N est croissante,
∗ (vn)n∈N est décroissante,
∗ ∆n = vn − un −→

n→+∞
0.

Théorème 5 Si (un)n∈N et (vn)n∈N sont adjacentes alors elles convergent vers la même limite ` ∈ R et:
∀n ∈ N, un 6 ` 6 vn.
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Preuve:

Exemple 14 Etude des suites: un =

n∑
k=0

1

k!
+

1

n!n
et vn =

n∑
k=0

1

k!
∀n ∈ N∗.

∗ Exemple 13: (un) est décroissante.

∗ ∀n > 1, vn+1 − vn =
1

(n+ 1)!
> 0, donc (vn) est croissante.

∗ ∆n = vn − un = − 1

n!n
−→

n→+∞
0.

Conclusion: les suites sont adjacentes et convergent vers la même limite. (il s’agit du nombre de Neper e)

3 Limites infinies

3.1 Définition
Lecture graphique 2 :
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Intuitivement, un −→
n→+∞

+∞ signifie que un est très grand (aussi grand que l’on veut) quand n est suffisamment grand:

∀A ∈ R, ∃N ∈ N/∀n > N un > A.

Pour tout "voisinage de +∞" il existe un rang un est très grand
(au dessus de tout seuil) à partir duquel (un est au dessus du seuil donné au départ)

Définition 7 :
(1) On dit qu’une suite (un)n∈N diverge vers +∞ si:

∀A ∈ R, ∃N ∈ N/∀n > N , un > A

On note lim
n→+∞

un = +∞ ou un −→
n→+∞

+∞.

(2) On dit qu’une suite (un)n∈N diverge vers −∞ si:

∀A ∈ R, ∃N ∈ N/∀n > N , un 6 A

On note lim
n→+∞

un = −∞ ou un −→
n→+∞

−∞.

(3) On dit qu’une suite diverge si elle diverge vers une limite infinie ou si elle n’a pas de limite.

Remarque 13 Comme dans le cas des limites finies, prendre des inégalités strictes (un > A) ne change rien.

Exemple 15 un = qn diverge vers +∞ si q > 1.

3.2 Relation d’ordre et suites monotones
Proposition 7 Soient deux suites (un)n∈N et (vn)n∈N telles que: ∀n ∈ N, un 6 vn. (APCR suffit)
(1) si (un)n∈N diverge vers +∞ alors (vn)n∈N diverge aussi vers +∞.
(2) si (vn)n∈N diverge vers −∞ alors (un)n∈N diverge aussi vers −∞.

Preuve:

Remarque 14 : ATTENTION!
(1) On n’a pas besoin d’un encadrement: une seule inégalité suffit:

Exemple 16 ∀n > 1, nn = n× . . .× n︸ ︷︷ ︸
n fois

> n× 1× . . .× 1︸ ︷︷ ︸
(n−1) fois

= n. Donc lim
n→+∞

nn = +∞.

(2) L’inégalité doit être dans le bon sens:

Exemple 17 ∀n ∈ N∗, n2 > 1⇒ n > 1
n .

On a bien lim
n→+∞

n = +∞, mais ce n’est pas pour autant que lim
n→+∞

1

n
= +∞!!

Théorème 6 :
(1) Toute suite croissante et non majorée diverge vers +∞.
(2) Toute suite décroissante et non minorée diverge vers −∞.

Preuve:
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Exemple 18 Retour sur la série harmonique:

3.3 Opérations sur les limites
Pour déterminer la limite de la somme, du produit ou du quotient de deux suites admettant des limites finies ou non, il suffit
de lire les tableaux suivants.
F.I signifie "Forme indéterminée" : les théorèmes ne permettant pas de déterminer la limite, on ne peut conclure. Il va donc
falloir lever l’indétermination par d’autres méthodes.
• Somme:

+
↗

`′ ∈ R −∞ +∞

` ∈ R `+ `′ −∞ +∞
−∞ −∞ −∞ F.I
+∞ +∞ F.I +∞

• Produit:

×
↗

−∞ +∞

` < 0 +∞ −∞
` = 0 F.I F.I
` > 0 −∞ +∞
−∞ +∞ +∞
+∞ −∞ +∞

• Quotient:
un ` 6= 0 −∞ +∞ ` = 0+

(un>0 APCR)
` = 0−

(un<0 APCR)
` = 0

1

un

1

`
0 0 +∞ −∞ n’a pas de limite

• Conclusion: Il y a quatre types de formes indéterminées:

(+∞) + (−∞); 0×∞;
0

0
;
∞
∞

CAPACITÉ EXIGIBLE 3 : Comment lever une indétermination?

1. Mettre en facteur le terme de plus haut degré:

Exemple 19 un =
n3 + n2 − 1

n2 + 2
(F.I de la forme

∞
∞

)

Puisque n tend vers +∞, n est suffisamment grand, donc n > 0 (n 6= 0 suffit), donc:

Or lim
n→+∞

1

n
= 0 et lim

n→+∞

1

n3
= 0, donc lim

n→+∞
1 +

1

n
− 1

n3
= 1.

De même, lim
n→+∞

1 +
2

n2
= 1.

Conclusion: lim
n→+∞

1 + 1
n −

1
n3

1 + 2
n2

= 1 >0 , donc lim
n→+∞

un = +∞.

Exemple 20 vn =
√
n+ 1−

√
n (F.I de la forme (+∞) + (−∞))

Puisque n tend vers +∞, n est suffisamment grand, donc n > 0, donc:

vn =

√
n

(
1 +

1

n

)
−
√
n =
√
n

(√
1 +

1

n
− 1

)
.
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Or lim
n→+∞

1

n
= 0 donc lim

n→+∞

√
1 +

1

n
=
√

1 = 1, donc lim
n→+∞

(√
1 +

1

n
− 1

)
= 0, et on récupère une F.I de la forme

0×∞ . . .
Cette méthode n’est donc pas adaptée, car l’indétermination provient du signe ”−” entre les racines. . .

2. Quantité conjuguée:

Or lim
n→+∞

√
n+ 1 +

√
n = +∞, donc lim

n→+∞
vn = 0.

3. Croissances comparées:

Proposition 8 ∀α, β > 0, ∀a > 1,

lim
n→+∞

(lnn)β

nα
= 0 lim

n→+∞

nα

an
= 0 lim

n→+∞

an

n!
= 0

Rappel 2 an = en ln a (exponentielle de base a), donc pour l’exponentielle (de base e):

lim
n→+∞

en

n!
= 0 lim

n→+∞
nαe−n = 0

Remarque 15 On prend aussi la notation un << vn si lim
n→+∞

un
vn

= 0 qui se lit: “vn l’emporte sur un”. Donc:

(lnn)β << nα << an << n!

(la factorielle l’emporte sur les exponentielles qui l’emportent sur les puissances qui l’emportent sur les logarithmes)

Penser aussi aux inverses: lim
n→+∞

an

nα
= +∞.

Preuve:

Preuve de lim
n→+∞

(lnn)β

nα
= 0 pour plus tard...

Preuve de lim
n→+∞

nα

an
= 0:

Posons un =
nα

an
pour tout entier n. ∀n ∈ N, un > 0, et montrons que la limite de

un+1

un
quand n tend vers +∞ est

1

a
:

Puisque
1

a
< 1, il existe un réel q tel que 0 <

1

a
< q < 1 et

un+1

un
< q APCR. Donc un+1 < qun APCR (∀n > N).

Donc, par récurrence: ∀n > N , un < qn−N uN .
Conclure sur la limite de u:

Remarque 16 ATTENTION à “l’emporte” TROP RAPIDE!!
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Exemple 21 un =
e
√
lnn

n2
n’est pas une croissance comparée...

Remarque 17 : ATTENTION!
Pour les suites de la forme abnn : PASSER À L’EXPONENTIELLE!!
Sinon, le risque est de ne pas voir l’indétermination et d’écrire de grosses bêtises...

Exemple 22 un =

(
1 +

1

n

)n
∀n ∈ N∗.

Version fausse: lim
n→+∞

1 +
1

n
= 1 et 1n = 1 ∀n donc lim

n→+∞
un = 1...

Version juste: ∀n ∈ N∗, un = en ln(1+ 1
n ). lim

n→+∞
ln

(
1 +

1

n

)
= ln 1 = 0, il y a donc indétermination!!

4. Utilisation des équivalents

4 Suites équivalentes

4.1 Définition
Définition 8 Soient (un)n∈N et (vn)n∈N deux suites qui ne s’annulent pas (au moins APCR).
On dit que (un) est équivalente à (vn) et l’on note un ∼ vn lorsque:

lim
n→+∞

un
vn

= 1 .

Remarque 18 Lorsque (un) est équivalente à (vn), (vn) est aussi équivalente à (un) donc, sans précision d’ordre, on peut
dire: (un) et (vn) sont équivalentes.

Remarque 19 Soit ` ∈ R∗, un ∼ ` signifie . . .
Si ` = 0, NE JAMAIS écrire un ∼ 0!!!

Exemple 23 : le plus haut degré l’emporte en +∞.
(1) 2n2 + n+ 1 ∼ 2n2, en effet:

(2) −5n3 + n2 − 1 ∼ . . .
(3) Tout polynôme est équivalent en +∞ à son monôme de plus haut degré:

apn
p + ap−1n

p−1 + . . .+ a1n+ a0 ∼ apnp , avec ap 6= 0

En effet:

Exemple 24 : équivalents usuels.
Soit (un) non nulle APCR et telle que lim

n→+∞
un = 0 alors:

sin(un) ∼ un tan(un) ∼ un cos(un)− 1 ∼ −u
2
n

2
,

eun − 1 ∼ un ln(1 + un) ∼ un
√

1 + un − 1 ∼ un
2

(1 + un)α − 1 ∼ αun, ∀α ∈ R∗

4.2 Propriétés
Proposition 9 :
(1) Transitivité: si un ∼ vn et vn ∼ wn alors un ∼ wn.
(2) Multiplication par un réel non nul: pour tout λ ∈ R∗, si un ∼ vn alors λun ∼ λvn.
(3) Produit: si un ∼ wn et vn ∼ rn alors un vn ∼ wn rn.
(4) Quotient: si un ∼ wn et vn ∼ rn alors

un
vn
∼ wn

rn
.
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Preuve: Il s’agit d’utiliser les opérations sur les suites convergentes:

POINT MÉTHODE 3 :
Dans un calcul de limite, on peut remplacer, sans hésiter, une suite par l’un de ses équivalents dans un produit, un quotient.

Exemple 25 :

(1) Quotient de deux polynômes:
2n2 + 5n− 1

(3n− 1)(1− n)
.

(2) n sin(
n+ 1

n2
):

Proposition 10 (composées):
(1) Valeur absolue: un ∼ vn ⇒ |un| ∼ |vn|.
(2) Puissance entière: un ∼ vn ⇒ upn ∼ vpn, pour tout p ∈ N.
(3) Puissance réelle constante: un ∼ vn ⇒ uαn ∼ vαn , pour tout α ∈ R. (un > 0 et vn > 0 APCR)

Preuve:

POINT MÉTHODE 4 :
Dans un calcul de limite, on peut remplacer, sans hésiter, une suite par l’un de ses équivalents dans une élévation à une
puissance constante.

Exemple 26 :
(1) (n+ 2)

√
n2 + n+ 1

(2)
(n2 + n+ 1)5

2n+ 3

Remarque 20 ATTENTION: ON NE SOMME PAS LES ÉQUIVALENTS !
contre-exemple: n2 + 1 ∼ n2 et −n2 − 3 ∼ −n2 MAIS n2 + 1− n2 − 3 ∼ n2 − n2?

Remarque 21 ATTENTION aux EXPONENTIELLES et au LOGARITHME :
∗ n2 + n ∼ n2 MAIS en

2+n ∼ en2

?
∗ 1 + e−n ∼ 1 MAIS ln(1 + e−n) ∼ ln 1?

En fait:
∗ lim
n→+∞

un − vn = 0⇒ eun ∼ evn .
∗ Si un ∼ vn avec un, vn > 0 et lim

n→+∞
vn = L 6= 1 (avec L ∈ R+ ∪ {+∞}) alors ln(un) ∼ ln(vn).

POINT MÉTHODE 5 Dans un calcul de limite, dans une somme ou une différence ou encore pour composer avec une
fonction (comme l’exponentielle, le logarithme, le sinus, . . ., mais pas l’élévation à une puissance constante), une étude
particulière s’impose car il n’existe pas de résultat général.
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4.3 Applications
4.3.1 Recherche de limite

Proposition 11 Si (un) converge vers `, où ` 6= 0 alors un ∼ `.

Théorème 7 Si un ∼ vn et lim
n→+∞

vn = L ∈ R ∪ {−∞,+∞}, alors lim
n→+∞

un = L.

Preuve:

Exemple 27 :

(1)
sin( 1

n )

e
2
n − 1

.

(2) un =

(
1 +

1

n

)n
.

4.3.2 Recherche de signe

Théorème 8 Si un ∼ vn alors un et vn sont de même signe APCR.

Preuve:
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