Applications linéaires et matrices

$BCPST\ 1C-Mme\ MOREL$

INTRODUCTION

Dans ce chapitre $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$, et p,n deux entiers naturels. Le mot "linéaire" a déjà été plusieurs fois rencontré au cours de l'année: opérateur \sum , dérivation, intégrale, espérance, transposition d'une matrice... Plus précisément:

1 Applications linéaires

1.1 Définition et propriétés

$D\'{e}finition 1:$

(1) Une application $f: \mathbb{K}^p \to \mathbb{K}^n$ est linéaire si:

$$\forall x, y \in \mathbb{K}^p, \forall \lambda, \mu \in \mathbb{K}, f(\lambda x + \mu y) = \lambda f(x) + \mu f(y).$$

- (2) L'ensemble des applications linéaires de \mathbb{K}^p dans \mathbb{K}^n est noté $\mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)$.
- (3) Si n = 1, une application linéaire de \mathbb{K}^n dans \mathbb{K} est appelée forme linéaire.
- (4) Si n = p, une application linéaire de \mathbb{K}^n dans \mathbb{K}^n est appelée endomorphisme de \mathbb{K}^n , et l'ensemble des endomorphismes de \mathbb{K}^n est noté $\mathcal{L}(\mathbb{K}^n)$.

Exemple 1:

(1)
$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x, y, z) & \mapsto & (x + y, y - z) \end{array}$$

(2) Soit l'application f de \mathbb{R}^4 dans \mathbb{R} telle que: f(x,y,z,t)=2x+y-z+3t. Montrer que f est une forme linéaire.

Proposition 1 Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$. Alors:

- (1) $f(O_p) = O_n$, où O_p (resp. O_n) désigne le vecteur nul de \mathbb{K}^p (resp. \mathbb{K}^n).
- (2) $\forall x \in \mathbb{K}^p$, f(-x) = -f(x).
- (3) $\forall x_1, \dots, x_k \in \mathbb{K}^p$, $\forall \lambda_1, \dots, \lambda_k \in \mathbb{K}$, $f(\lambda_1 x_1 + \dots + \lambda_k x_k) = \lambda_1 f(x_1) + \dots + \lambda_k f(x_k)$.

Preuve:

1.2 Opérations

Proposition 2 (somme et multiplication par un scalaire): Soient f et g deux applications linéaires de \mathbb{K}^p dans \mathbb{K}^n . (1) $f + g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$.

(2) $\forall \lambda \in \mathbb{K}, \ \lambda f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n).$

Preuve:
Corollaire 1 $\mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ est un \mathbb{K} espace vectoriel.
Preuve:
Proposition 3 (composée): Soient $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ et $g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$. Alors $g \circ f$ est une application linéaire de \mathbb{K}^p dan \mathbb{K}^m .
Preuve:
Remarque 1 : • On sait déjà que $(\lambda f_1 + \mu f_2) \circ g = \lambda f_1 \circ g + \mu f_2 \circ g$. En effet:
ightarrow a - t -on besoin de la linéarité des applications?
• Étudions la distributivité à gauche: $g \circ (\lambda f_1 + \mu f_2) = \lambda g \circ f_1 + \mu g \circ f_2$.
$ ightarrow Que\ se\ passe-t-il?$
$\textbf{\textit{Proposition 4}} \ \forall f_1, f_2 \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n), \ \forall g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m), \ \forall \lambda, \mu \in \mathbb{K}, \ g \circ (\lambda f_1 + \mu f_2) = \lambda g \circ f_1 + \mu g \circ f_2.$
Preuve:
Ne remarquez-vous pas des ressemblances entre la loi \circ et la multiplication dans $\mathcal{L}(\mathbb{K}^n)$?

 $\underline{\text{Conclusion:}} \text{ on prendra souvent la notation multiplicative} \times \text{pour désigner la composition} \circ, \text{c'est-\`a-dire:}$

* on écrira g f au lieu de $g \circ f$, * on écrira f^n au lieu de $\underbrace{f \circ f \circ \ldots \circ f}_{n \text{ fois}}$, avec la convention $f^0 = Id$.

Mais ATTENTION!! La loi \circ n'est pas . . .

Applications linéaires bijectives

Définition 2 Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$.

- (1) Si f est bijective, on dit que f est un isomorphisme.
- (2) Si n = p. Si f est bijective, on dit que f est un automorphisme de \mathbb{K}^n . (en d'autres termes, un automorphisme de \mathbb{K}^n est un endomorphisme bijectif de \mathbb{K}^n)

On note $\mathcal{GL}(\mathbb{K}^n)$ l'ensemble des automorphismes de \mathbb{K}^n , appelé groupe linéaire de \mathbb{K}^n

Remarque 2 Puisqu'on peut noter multiplicativement la composition, la réciproque d'une application bijective est aussi appelée inverse.

Proposition 5 Soit f un isomorphisme de \mathbb{K}^p dans \mathbb{K}^n . Alors son inverse f^{-1} est une application linéaire de \mathbb{K}^n dans \mathbb{K}^p .

Preuve:

Proposition 6 Soient $g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ et $f \in \mathcal{L}(\mathbb{K}^m, \mathbb{K}^p)$ deux isomorphismes, alors $g \circ f$ est un isomorphisme et

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
.

Preuve:

2 Matrices et applications linéaires

Introduction

2.1 Écriture matricielle d'une application linéaire

Définition 3 Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, $\mathcal{E} = (e_1, \dots, e_p)$ une base de \mathbb{K}^p et $\mathcal{F} = (f_1, \dots, f_n)$ une base de \mathbb{K}^n . On appelle matrice de f dans les bases \mathcal{E} et \mathcal{F} , la matrice de $\mathcal{M}_{np}(\mathbb{K})$ notée $\boxed{mat_{\mathcal{E},\mathcal{F}}(f)}$, définie par: la colonne f contient les coordonnées du vecteur $f(e_f)$ dans la base \mathcal{F} .

Plus précisément, si
$$f(e_j) = (a_{1j}, a_{2j}, \dots, a_{nj})_{\mathcal{F}}$$
 alors $C_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}$.

Remarque 3 Les bases \mathcal{E} et \mathcal{F} étant fixées, combien de matrices représentent l'application linéaire f dans les bases \mathcal{E} et \mathcal{F} ?

Remarque 4:

- (1) Si f est un endomorphisme de \mathbb{K}^n alors $mat_{\mathcal{E},\mathcal{F}}(f)$, où \mathcal{E} et \mathcal{F} sont des bases de \mathbb{K}^n (peuvent être les mêmes!) est carrée d'ordre n.
- (2) Pour une forme linéaire, on obtient une matrice ligne. exemple: f(x,y,z,t)=2x-3y+5z-t, pour tout $(x,y,z,t)\in\mathbb{R}^4$.
- (3) Si $f = id_{\mathbb{K}^n}$, alors
 - * $mat_{\mathcal{B}_{can}}(id) = I_n$.
 - * Si on change de base: $mat_{\mathcal{E}}(id) = \dots$
 - * Si on ne prend pas la même base: $mat_{\mathcal{E},\mathcal{F}}(id) = I_n$?

CAPACITÉ EXIGIBLE 1 : Déterminer la matrice d'une application linéaire $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$.

$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (-y+z,x-2z) \end{array}$$

1. On prend une base (canonique par défaut) (e_1, \ldots, e_p) de \mathbb{K}^p , puis on calcule $f(e_1), \ldots, f(e_p)$: Par exemple:

 \mathcal{E}_1 : base canonique

$$\mathcal{E}_2 = \langle (1,0,0), (1,1,0), (1,1,1) \rangle$$

2. Une base \mathcal{F} (canonique par défaut) de \mathbb{K}^n étant donnée, on calcule les coordonnées de $f(e_1), \ldots, f(e_p)$ dans la base \mathcal{F} : Par exemple:

 \mathcal{F}_1 : base canonique

$$\mathcal{F}_2 = \langle (1,1), (0,1) \rangle$$

Cas 1: \mathcal{E}_1 et \mathcal{F}_1

Cas 2: \mathcal{E}_1 et \mathcal{F}_2

Cas 3: \mathcal{E}_2 et \mathcal{F}_2

3. On range les coordonnées obtenues en colonnes (ATTENTION À L'ORDRE DES COLONNES!!)

Proposition 7 Soient $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, $A = mat_{\mathcal{E}, \mathcal{F}}(f)$, où \mathcal{E} (resp. \mathcal{F}) est une base de \mathbb{K}^p (resp. \mathbb{K}^n). Pour tout $x = (x_1, ..., x_p)_{\mathcal{E}} \in \mathbb{K}^p$, on note $y = f(x) = (y_1, ..., y_n)_{\mathcal{F}} \in \mathbb{K}^n$. Matriciellement:

Notant X la matrice qui représente le vecteur x dans la base \mathcal{E} : $X = mat_{\mathcal{E}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$;

 $et\ Y = mat_{\mathcal{F}}(y) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, la matrice qui représente le vecteur y = f(x) dans la base \mathcal{F} . Alors Y = AX, qu'on écrit:

$$\boxed{mat_{\mathcal{F}}(f(x)) = mat_{\mathcal{E},\mathcal{F}}(f) \times mat_{\mathcal{E}}(x)} \ (notez \ la \ cohérence \ des \ bases...)}$$

Preuve:

Exemple 3 Soit f l'endomorphisme de \mathbb{R}^3 de matrice A dans la base canonique de \mathbb{R}^3 :

$$A = \left(\begin{array}{ccc} 1 & -2 & 0 \\ 0 & 4 & -3 \\ 2 & 1 & 3 \end{array}\right) .$$

Remarque 5 Si $A \in \mathcal{M}_{np}(\mathbb{K})$ telle que: $\forall x \in \mathbb{K}^p, mat_{\mathcal{F}}(f(x)) = A \times mat_{\mathcal{E}}(x).$ Alors $A = mat_{\mathcal{E},\mathcal{F}}(f)$. Preuve: 2.2 Matrice d'une combinaison linéaire d'applications linéaires $Proposition \ 8 \ Soient \ f, g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n), \ et \mathcal{E} \ (resp. \ \mathcal{F}) \ une \ base \ de \ \mathbb{K}^p \ (resp. \ \mathbb{K}^n). \ Alors:$ $\boxed{mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g)}$ Preuve:
$\forall x \in \mathbb{K}^p , mat_{\mathcal{F}}(f(x)) = A \times mat_{\mathcal{E}}(x) .$ Alors $A = mat_{\mathcal{E},\mathcal{F}}(f)$. Preuve:
$\forall x \in \mathbb{K}^p , mat_{\mathcal{F}}(f(x)) = A \times mat_{\mathcal{E}}(x) .$ Alors $A = mat_{\mathcal{E},\mathcal{F}}(f)$. Preuve:
$\forall x \in \mathbb{K}^p , mat_{\mathcal{F}}(f(x)) = A \times mat_{\mathcal{E}}(x) .$ Alors $A = mat_{\mathcal{E},\mathcal{F}}(f)$. Preuve:
Alors $A = mat_{\mathcal{E},\mathcal{F}}(f)$. Preuve: 2.2 Matrice d'une combinaison linéaire d'applications linéaires Proposition 8 Soient $f, g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, et \mathcal{E} (resp. \mathcal{F}) une base de \mathbb{K}^p (resp. \mathbb{K}^n). Alors: $\boxed{mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g)}$
Preuve: 2.2 Matrice d'une combinaison linéaire d'applications linéaires Proposition 8 Soient $f, g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, et \mathcal{E} (resp. \mathcal{F}) une base de \mathbb{K}^p (resp. \mathbb{K}^n). Alors: $\boxed{mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g)}$
Proposition 8 Soient $f, g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, et \mathcal{E} (resp. \mathcal{F}) une base de \mathbb{K}^p (resp. \mathbb{K}^n). Alors: $ \boxed{ mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g) } $
Proposition 8 Soient $f, g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, et \mathcal{E} (resp. \mathcal{F}) une base de \mathbb{K}^p (resp. \mathbb{K}^n). Alors: $ \boxed{ mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g) } $
Proposition 8 Soient $f, g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, et \mathcal{E} (resp. \mathcal{F}) une base de \mathbb{K}^p (resp. \mathbb{K}^n). Alors: $ \boxed{ mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g) } $
Proposition 8 Soient $f, g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, et \mathcal{E} (resp. \mathcal{F}) une base de \mathbb{K}^p (resp. \mathbb{K}^n). Alors: $ \boxed{ mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g) } $
Proposition 8 Soient $f, g \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, et \mathcal{E} (resp. \mathcal{F}) une base de \mathbb{K}^p (resp. \mathbb{K}^n). Alors: $ \boxed{ mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g) } $
$\boxed{mat_{\mathcal{E},\mathcal{F}}(f+g) = mat_{\mathcal{E},\mathcal{F}}(f) + mat_{\mathcal{E},\mathcal{F}}(g)}$
Preuve:
Proposition 9 Soient $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$, et \mathcal{E} (resp. \mathcal{F}) une base de \mathbb{K}^p (resp. \mathbb{K}^n). Alors, pour tout scalaire $\lambda \in \mathbb{K}$:
$oxed{mat_{\mathcal{E},\mathcal{F}}(\lambdaf) = \lambdamat_{\mathcal{E},\mathcal{F}}(f)}$
Preuve:

2.3 Matrice de la composée d'applications linéaires

Proposition 10 Soient $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^m)$, $g \in \mathcal{L}(\mathbb{K}^m, \mathbb{K}^n)$, et \mathcal{E} une base de \mathbb{K}^p , \mathcal{F} une base de \mathbb{K}^n et \mathcal{G} une base de \mathbb{K}^m . Alors:

$$\boxed{mat_{\mathcal{E},\mathcal{F}}(g \circ f) = mat_{\mathcal{G},\mathcal{F}}(g) \times mat_{\mathcal{E},\mathcal{G}}(f)}$$

Preuve:

Remarque 6: cas particuliers.

- (1) Si f est un endomorphisme: $mat_{\mathcal{E}}(f \circ f) = (mat_{\mathcal{E}}(f))^2$.
- Ou encore, utilisant la notation multiplicative: $mat_{\mathcal{E}}(f^2) = (mat_{\mathcal{E}}(f))^2$.

Généralisation: $mat_{\mathcal{E}}(f^n) = (mat_{\mathcal{E}}(f))^n$

(2) Si f est un isomorphisme:

Proposition 11 Soient $f \in \mathcal{L}(\mathbb{K}^n)$, et \mathcal{E} , \mathcal{F} deux bases de \mathbb{K}^n . Alors: f est un isomorphisme (bijective) ssi $mat_{\mathcal{E},\mathcal{F}}(f)$ est inversible.

Dans ce cas: $mat_{\mathcal{F},\mathcal{E}}(f^{-1}) = (mat_{\mathcal{E},\mathcal{F}}(f))^{-1}$

Preuve:

Exemple 4 $f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (x+y-z,2x+y,y-z) \end{array}$

Exemple 5 $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ A vous: $(x,y,z) \mapsto (x-2y+z,x+y-2z,-2x+y+z)$

POINT MÉTHODE 1: Comment montrer que f est bijective?

- * il suffit de montrer que ker $f = \{O\}$ (voir partie 3)
- * il suffit d'étudier *l'inversibilité de A* (calcul du rang de A, et donc du rang de f (partie 3)).
- * Pour calculer f^{-1} , il suffit de connaître la matrice qui la représente, donc on calcule A^{-1} . On "récupère" $f^{-1}(x)$ par le produit matriciel...

3 Noyau et image d'une application linéaire

3.1 Noyau

Définition 4 Le noyau d'une application linéaire f de \mathbb{K}^p dans \mathbb{K}^n est l'ensemble noté ker f défini par:

$$\ker f = \{ x \in \mathbb{K}^p / f(x) = O_n \}$$

(autrement dit: le noyau est l'ensemble des antécédents du vecteur nul de \mathbb{K}^n)

Proposition 12 ker f est un sev de \mathbb{K}^p .

Preuve:

CAPACITÉ EXIGIBLE 2 :

CALCUL D'UN NOYAU → RÉSOLUTION D'UN SYSTÈME LINÉAIRE HOMOGÈNE

(équations)

 \rightarrow base et dimension

Exemple 6 $f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (x+y,y-z) \end{array}$

$$\begin{array}{cccc} \textbf{Exemple 7:} & & \\ f: & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ f: & (x,y,z) & \mapsto & (x+y-z,2x+y,y-z) \end{array}$$

$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (x-2y+z,x+y-2z,-2x+y+z) \end{array}.$$

A quoi sert un noyau? Il caractérise l'injectivité... Rappel: $f: E \to F$ est injective ssi $\forall x, y \in E$, $f(x) = f(y) \Rightarrow x = y$ (au plus un antécédant)

Théorème 1 Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$. f est injective ssi $\ker f = \{O_p\}$.

Preuve:

POINT MÉTHODE 2:

On a ker $f = \{O\}$ ssi $\forall x \in \mathbb{K}^p$, $f(x) = O_n \Rightarrow x = O_p$. En effet:

Donc: pour montrer que $\ker f = \{O\}$, il suffit de montrer que $\forall x \in \mathbb{K}^p$, si $f(x) = O_n$ alors $x = O_p$. Soit encore:

 $\ker f = \{O\} \iff$ le système linéaire homogène associé (\mathcal{S}) a une unique solution. (la nulle)

Exemple 8 (suite des exemples 6 et 7):

Remarque 7 A RETENIR: si n = p, notons A la matrice qui représente f dans une base de \mathbb{K}^n . Alors:

$$\begin{split} \ker f &= \{O\} \iff (\mathcal{S}) \text{ est de Cramer (voir le point méthode précédent)} \\ &\iff rg(\mathcal{S}) = n \\ &\iff rgA = n \\ &\iff A \text{ est inversible} \,. \end{split}$$

3.2 Image

Définition 5 Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$. L'image de f est l'ensemble $f(\mathbb{K}^p)$ (image de \mathbb{K}^p par f), noté Imf:

$$Im f = \{ y \in \mathbb{K}^n / \exists x \in \mathbb{K}^p , f(x) = y \} = \{ f(x) / x \in \mathbb{K}^p \}.$$

Proposition 13 Imf est un sev de \mathbb{K}^n .

Preuve:

CAPACITÉ EXIGIBLE 3 :

CALCUL D'UNE IMAGE → COMPATIBILITÉ D'UN SYSTÈME LINÉAIRE

(équations)

 \rightarrow base et dimension

Exemple 9 $f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \mapsto & (x+y,y-z) \end{array}$

Exemple 10 :
$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (x+y-z,2x+y,y-z) \end{array}$$

$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (x-2y+z,x+y-2z,-2x+y+z) \end{array}.$$

 \rightarrow A quoi sert l'image? Elle caractérise la surjectivité...

Théorème 2 Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$. f est surjective ssi $Im f = \mathbb{K}^n$.

Preuve:

Théorème 3 Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$. Soit (u_1, \dots, u_p) une base de \mathbb{K}^p (pas forcément la base canonique!). Alors

$$\boxed{Imf = Vect\left(f(u_1), \dots, f(u_p)\right)}$$

Remarque 8 Ce théorème dit que: pour tout vecteur u de \mathbb{K}^p , il existe p scalaires $\lambda_1, \ldots, \lambda_p$ tels que

$$f(u) = \lambda_1 f(u_1) + \ldots + \lambda_p f(u_p).$$

Il suffit donc de connaître $f(u_1), \ldots, f(u_p)$ pour connaître l'image de tout vecteur de \mathbb{K}^p par f, soit encore: une application linéaire est entièrement déterminée par l'image des vecteurs d'une base (ne dépend pas du choix de la base).

Preuve:

CAPACITÉ EXIGIBLE 4 Ce théorème donne une autre méthode (plus "vectorielle") pour calculer une image:

CALCUL D'UNE IMAGE \rightarrow LIBERTÉ DE LA FAMILLE $f(u_1), \dots, f(u_p)$ (lemme de réduction) \rightarrow base et dimension

Exemple 11 (reprise des exemples 9 et 10):

3.3 Théorème du rang

Remarque 9:

(1) On a: $\dim(Imf) = \dim Vect(f(u_1), \dots, f(u_p)) = rg(f(u_1), \dots, f(u_p))$, d'où la définition suivante.

(2) A RETENIR: si n = p, notant A la matrice qui représente f dans une base $\langle u_1, \dots, u_n \rangle$ de \mathbb{K}^n :

$$\begin{split} Imf &= \mathbb{K}^n \iff (f(u_1), \dots, f(u_n)) \text{ est une base de } \mathbb{K}^n \\ &\iff rg(f(u_1), \dots, f(u_n)) = n \\ &\iff \text{le système linéaire de matrice } A \text{ est de Cramer} \\ &\iff A \text{ a } n \text{ pivots} \\ &\iff rgA = n \,. \end{split}$$

Définition 6 Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$. On appelle rang de f la dimension de Imf et on note:

$$rgf = \dim(Imf)$$
.

Théorème 4 (ADMIS) : Théorème du rang $Soit f \in \mathcal{L}(\mathbb{K}^p,\mathbb{K}^n)$. Alors :

$$\dim(\ker f) + rgf = \dim(\mathbb{K}^p) = p$$

POINT MÉTHODE 3 (facultative)

Ce théorème donne une autre méthode pour déterminer le noyau d'une application linéaire :

3.4 Endomorphismes bijectifs

Dans cette partie n = p. Réunissons les remarques 7 et 9. On obtient:

Conclusion: $si \ n = p$

- $\bullet \ \ker f = \{O\}$ ssi finjectif ssi fsurjectif ssi fbijectif ssi rgf = n
- On remarque que rgf = rgA, où A est la matrice qui représente f dans une base de \mathbb{K}^n . Le rang n'est donc pas que le nombre de pivots d'un système linéaire ou de sa matrice associée, c'est aussi:
 - * liberté de la famille engendrée par les colonnes d'une matrice (ou le plus grand nombre de vecteurs linéairement indépendants)
 - $* \dim(Imf)$ où f est l'application linéaire représentée dans certaines bases par la matrice.
- \bullet f bijective ssi A inversible.