Semaine 5: 3 au 7 novembre 2025

les programmes de colles précédents sont aussi à réviser ...

A. Calculs avec ln / exp , sommes doubles : voir S4

ln et exp : calculs algébriques ; résolution d'équations / inéquations

Note aux colleurs : les propriétés fonctionnelles et les résolutions d'(in)équations ne sont pas à ce programme.

B. Coefficients binomiaux

- * **Définition et propriétés:** $\binom{n}{0} = 1 = \binom{n}{n}; \ \forall n \geqslant 2, \ \binom{n}{2} = \frac{n \, (n-1)}{2}; \ \forall n \in \mathbb{N}, \ \forall 0 \leqslant p \leqslant n, \ \binom{n}{p} = \binom{n}{n-p}$ (formule de symétrie); Pour tout entier $p, n \in \mathbb{N}$ tels que $1 \leqslant p \leqslant n, \ \binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}$. (formule du chef)
- * Formule de Pascal; illustration du triangle de Pascal
- * Binôme de Newton.
 - \rightarrow utilisation du triangle de Pascal pour des petites puissances.

$$\rightarrow \forall n \in \mathbb{N}, \sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

- * Raisonnements par récurrence
 - \rightarrow les coefficients binomiaux sont des entiers naturels.

C. Lecture du cercle trigonométrique (sinus - cosinus)

Placement d'angles à partir des angles usuels sur le cercle trigonométrique.

Valeurs des cosinus et sinus des angles usuels.

Formules à partir du cercle : 2π -périodiques, parité/imparité; $\cos(\pi - \theta) = \sin(\pi - \theta)$, $\cos(\pi + \theta)$, $\sin(\pi + \theta)$, $\cos(\frac{\pi}{2} - \theta)$, $\sin(\frac{\pi}{2} - \theta)$ en fonction de $\cos\theta$ et $\sin\theta$.

D. Langage Python

range(a,b,c); boucle for: calcul de sommes simples / produits.

Déroulement de la colle :

- 1. une question d'informatique (langage python) parmi les suivantes, choisie par l'interrogateur :
 - (a) Écrire une fonction maxi(x,y) d'arguments deux réels x et y et qui renvoie le plus grand des deux.
 - (b) Écrire une fonction puissance_reelle(x,y) (sans utiliser l'opérateur **) qui, étant donnés deux réels x et y: calcule et renvoie $e^{y \ln x}$ si x > 0, renvoie un message d'erreur sinon.
 - (c) Écrire une fonction somme(n) qui, pour tout entier naturel n, renvoie la valeur d'une somme choisie par l'interrogateur:

$$\sum_{k=1}^{n} k, \sum_{k=1}^{n} k^{\sqrt{k}}, \frac{1}{n} \sum_{k=0}^{n} \frac{1}{k^2}$$

- 2. Une question de cours, parmi les suivantes, choisie par l'interrogateur :
 - (a) Formule de Pascal : énoncé précis ; illustration du triangle de Pascal à justifier grâce aux propriétés des coefficients binomiaux.
 - (b) Énoncer et montrer les formules de symétrie et du chef.
 - (c) Calcul de $(1+\sqrt{5})^4$
 - (d) Formule du binôme de Newton: énoncé précis; application au calcul de : $\sum_{k=1}^{n} \binom{n}{k} x^{k-1}$ $(x \neq 0)$
 - (e) Calculer: $\forall n \in \mathbb{N}^*, \sum_{k=0}^n k \binom{n}{k}$
 - (f) Montrer par récurrence que les coefficients binomiaux sont des nombres entiers.
- 3. Trigonométrie : placement d'angle sur le cercle (du style exercices 1, 4, 5, 6, Fiche 11)
- 4. etc ...