Semaine 8: 24 au 28 novembre 2025

les programmes de colles précédents sont aussi à réviser ...

A. Calcul de limites

À rajouter cette semaine :

- * Limites en l'infini : croissances comparées.
- * Limites en 0 : factorisation par le dominant, croissances comparées.
- * Limites en $a \in \mathbb{R}$: on se ramène en 0 en posant h = x a, s'il y a indétermination

B. Étude complète de fonctions

À rajouter cette semaine :

- * Fonctions périodiques
- * Fonctions monotones / strictement monotones / constantes sur un intervalle.
- \rightarrow retour sur les résolutions d'inéquations en invoquant la stricte monotonie de la fonction sur un intervalle contenant les antécédants.
 - * Fonctions usuelles: cosinus, sinus et tangente, puissances réelles, exponentielle de base a, logarithme de base 10.
 - * Étude complète de fonctions:

ensemble de définition, périodicité/parité éventuelle, variations, limites, tableau de variations, éléments remarquables et allure graphique de la courbe représentative.

C. Langage Python

range(a,b,c); boucle for: calcul de sommes simples, doubles et produits

Déroulement de la colle :

- 1. une question d'informatique (langage python) parmi les suivantes, choisie par l'interrogateur :
 - (a) Écrire une fonction somme (n) qui, pour tout entier naturel n, renvoie la valeur d'une somme choisie par l'interrogateur: $\sum_{1\leqslant i,j\leqslant n}\ln(i+j), \sum_{1\leqslant i\leqslant j\leqslant n}i^{\sqrt{j}}$
 - (b) Écrire une fonction factorielle(n) qui, pour tout entier naturel n, renvoie la valeur de n! (sans utiliser la fonction factorial)
- 2. Une question de cours, parmi les suivantes, choisie par l'interrogateur :
 - (a) Une étude complète de fonction usuelle choisie par l'interrogateur, parmi : valeur absolue, carrée, cube, racine, inverse, exponentielle, logarithme népérien, sinus, cosinus, tangente, puissances réelles, exponentielle de base a.
 - (b) Rappeler la définition de x^{α} et montrer que : $\forall \alpha, \beta \in \mathbb{R}, \forall x, y > 0$,

$$x^{\alpha+\beta} = x^{\alpha} x^{\beta}$$
 $\frac{x^{\alpha}}{y^{\alpha}} = \left(\frac{x}{y}\right)^{\alpha}$

(c) Rappeler la définition de x^{α} et montrer que : $\forall \alpha, \beta \in \mathbb{R}, \forall x, y > 0$,

$$x^{\alpha\beta} = (x^{\alpha})^{\beta}$$
 $x^{\alpha}y^{\alpha} = (xy)^{\alpha}$

(d) Rappeler la définition de a^x et montrer que : $\forall x \in \mathbb{R}, y \in \mathbb{R}, \forall a > 0$,

$$a^{x+y} = a^x a^y \qquad a^{-x} = \frac{1}{a^x}$$

(e) Rappeler la définition de a^x et montrer que : $\forall a > 0, b > 0, \forall x \in \mathbb{R}$,

$$(ab)^x = a^x b^x$$

- (f) Montrer que la composée de deux fonctions décroissantes est croissante.
- 3. À partir d'un tableau de variations (donné par l'interrogateur), l'élève trace l'allure graphique correspondante, en spécifiant bien les éléments remarquables : pas plus de 5 minutes
- 4. etc ...