Calcul de limites

Rappel 1 On rappelle que F.I signifie forme indéterminée: on ne peut pas conclure. Pour cela, il faut lever l'indétermination. On relève 4 indéterminations:

$$\boxed{0\times\infty,(+\infty)+(-\infty),\frac{0}{0},\frac{\infty}{\infty}}$$

Soit $x_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$.

• Somme:

$\lim_{x \to x_0} (f+g)(x)$	$\ell' \in \mathbb{R}$	$-\infty$	$+\infty$	$\leftarrow \lim_{x \to x_0} g(x)$
$\ell \in \mathbb{R}$	$\ell + \ell'$	$-\infty$	$+\infty$	
$-\infty$	$-\infty$	$-\infty$	F.I	
$+\infty$	$+\infty$	F.I	$+\infty$	
$\lim_{x \to x_0} f(x)$				

• Produit:

$\lim_{x \to x_0} (f \times g)(x)$	$-\infty$	$+\infty$	$\ell' \neq 0$	0	$\leftarrow \lim_{x \to x_0} g(x)$
$\ell \neq 0$	∞	∞	$\ell \ell'$	0	
0	F.I	F.I	0	0	
$-\infty$	$+\infty$	$-\infty$	∞	F.I	
$+\infty$	$-\infty$	$+\infty$	∞	F.I	
$\lim_{x \to x_0} f(x)$					

Dans le cas ∞ , c'est la règle usuelle des signes qui s'applique:

$$\begin{array}{c|ccc} \times & -\infty & +\infty \\ \hline \ell < 0 & +\infty & -\infty \\ \hline \ell > 0 & -\infty & +\infty \end{array}$$

• Quotient:

$\lim_{x \to x_0} f(x)$	$\ell \neq 0$	$ \ell = 0^+ $ $f(x) > 0 \text{ au vois de } x_0$	$ \ell = 0^- $ $f(x) < 0 \text{ au vois de } x_0$	$-\infty$	$+\infty$	$\ell = 0$
$\lim_{x \to x_0} \frac{1}{f(x)}$	$\frac{1}{\ell}$	+∞	$-\infty$	0	0	n'a pas de limite

• Puisque $\frac{f(x)}{g(x)} = f(x) \times \frac{1}{g(x)}$, on en déduit la limite de $\frac{f(x)}{g(x)}$ en utilisant les deux derniers tableaux.

I. Calcul de limite de la forme " $\frac{\lambda}{0}$ ", où $\lambda \neq 0$

On est dans le cas d'un quotient $\frac{f(x)}{g(x)}$, où $\lim_{x\to x_0} f(x) = \lambda$ avec λ réel **non nul** et $\lim_{x\to x_0} g(x) = 0$.

Donc d'après le tableau "quotient", on doit connaître le signe de $\frac{\lambda}{g(x)}$ quand x est au voisinage (très proche) de x_0 . Très souvent, on va étudier les limites à gauche et à droite en x_0 . C'est-à-dire :

- x tend vers x_0 ET $x > x_0$, noté $\lim_{x \to x_0^-}$
- x tend vers x_0 ET $x < x_0$, noté $\lim_{x \to x_0^-}$

Et suivant le signe de g(x) quand x tend vers x_0 à droite ou à gauche, on obtient :

- si $\frac{\lambda}{g(x)} > 0$, alors $\frac{f(x)}{g(x)}$ tend vers $+\infty$
- si $\frac{\lambda}{g(x)} < 0$, alors $\frac{f(x)}{g(x)}$ tend vers $-\infty$

Exemple 1 $\lim_{x \to 1} \frac{2x+1}{x^2-1}$ et $\lim_{x \to -1} \frac{2x+1}{x^2-1}$

II. Repérer le dominant

- 1. Dominant en l'infini :
 - (a) Les grandes puissances de x l'emportent en l'infini : on factorise.

Exemple 2 $\lim_{x\to+\infty} \frac{2x+1}{x+1}$. (F.I de la forme $\frac{\infty}{\infty}$)

(b) Cas des racines et de la quantité conjuguée :

Exemple 3 $\sqrt{x^2+3x+1}+x+1$ en $-\infty$ (F.I de la forme $(+\infty)+(-\infty)$).

(c) En $+\infty$: $\forall n, p \in \mathbb{N}$, $(\ln(x))^p << x^n << e^x$, ce qui donne les **croissances comparées**: $\forall n, p \in \mathbb{N}$,

$$\lim_{x \to +\infty} \frac{(\ln x)^p}{x^n} = 0 \qquad \lim_{x \to +\infty} \frac{x^n}{e^x} = 0 \text{ (ou encore } \lim_{x \to +\infty} x^n e^{-x} = 0)$$

Exemple 4 On combine souvent avec la factorisation par le dominant. $\lim_{x\to +\infty}\frac{e^x+2x+7}{e^{2x}-1}.$

$$\lim_{x \to +\infty} \frac{e^x + 2x + 7}{e^{2x} - 1}$$

(d) Généralisation aux puissances réelles : $\forall \alpha, \beta > 0, \forall a > 1$,

$$\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0 \qquad \lim_{x \to +\infty} \frac{x^{\alpha}}{e^{x}} = 0 \text{ (ou encore } \lim_{x \to +\infty} x^{\alpha} e^{-x} = 0)$$

Exemple 5 $\lim_{x\to +\infty} x^5 e^{-x^2}$.

Remarque 1 En passant à l'inverse:
$$\lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty \qquad \lim_{x \to +\infty} \frac{x^{\alpha}}{(\ln x)^{\beta}} = +\infty$$

- 2. Dominant en 0:
 - (a) Les **petites** puissances de x l'emportent en 0 !! On factorise.

Exemple 6 Limite en 0^+ de $f(x) = \frac{x + x^2}{\sqrt{x} + x^2}$ (F.I de la forme $\frac{0}{0}$).

(b) croissances comparées : $\forall n, p \in \mathbb{N}$,

$$\lim_{x \to 0^+} x^n \left(\ln x\right)^p = 0$$

Exemple 7 $\lim_{x\to 0^+} 2x \ln(x+\sqrt{x})$

III. Organisation dans les calculs

- 1. CIBLER l'indétermination. "Mettre de côté" les termes qui ne génèrent pas d'indétermination.
- 2. Si x tend vers un réel a non nul, se ramener en 0 en posant h = x a.
- 3. Repérer le dominant et factoriser (cas particulier de la racine)
- 4. Bien connaître ses croissances comparées

Exercice 1 Déterminer, si elles existent, les limites suivantes:

1.
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x + 3}$$

3.
$$\lim_{x \to -1} \frac{x^2 + 2x - 3}{x^2 - 1}$$

5.
$$\lim_{x \to 0} e^{-1/x}$$

$$2. \lim_{x \to -3} \frac{x^2 + 2x + 3}{x + 3}$$

4.
$$\ln(e - e^{-1/x})$$
 en 0^+

Exercice 2 Déterminer, si elles existent, les limites suivantes:

1.
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^2 - 4x + 3}$$

4.
$$\lim_{x \to +\infty} \sqrt{\ln(x^2 + 1)} - \sqrt{\ln(x^2 - 1)}$$

6.
$$\lim_{x \to +\infty} \frac{x^2}{x-1} - \frac{x^2}{x+1}$$

2.
$$\lim_{x \to +\infty} \sqrt{x^2 + 2} - 3x$$

3.
$$\lim_{x \to +\infty} \sqrt{x^2 + 2x + 3} - x$$

5.
$$\lim_{x \to +\infty} \ln \left(\frac{2x^2 - x + 1}{2x^2 - 5x + 7} \right)$$

7.
$$\lim_{x \to +\infty} \sqrt{x^2 + 2x} - \sqrt{x^2 + x}$$

Exercice 3 Déterminer, si elles existent, les limites suivantes:

1.
$$\lim_{x \to 0} \frac{x^2}{x - e^{1/x}}$$

4.
$$\lim_{x \to +\infty} \frac{e^{3x} + 2x + 7}{e^x + e^{-x}}$$

7.
$$\frac{x \ln(x)}{\sqrt{x}+1}$$
, en 0⁺

2.
$$\lim_{x \to +\infty} e^{x^2} - e^{3x} + x^2$$

5.
$$\lim_{x \to +\infty} \frac{e^{4x} - e^x - 1}{x^4 + 2x + 1}$$

3.
$$\lim_{x \to -\infty} e^{-3x} - \frac{1}{x} + x - e^{x^2}$$

6.
$$\lim_{x \to +\infty} x^5 e^{-x^2}$$
.

8.
$$\lim_{x \to +\infty} \frac{1}{x} \ln \left(\frac{e^x - 1}{x} \right)$$
.

Exercice 4 Déterminer, si elles existent, les limites suivantes:

1.
$$\lim_{x \to +\infty} x^5 e^{-x^2}$$
.

$$3. \lim_{x \to +\infty} x^2 e^{1/x}.$$

5.
$$\lim_{x \to +\infty} (x-1)^2 \ln(x-1)$$
.

$$2. \lim_{x \to +\infty} x^4 e^{-\sqrt{x}}.$$

$$4. \lim_{x \to +\infty} \frac{e^{x^3}}{x}.$$

6.
$$\frac{x^3}{\sqrt{1-x}}e^{\frac{1}{x(x-1)}}$$
, en 0^+