Étude des branches infinies

BCPST 1C - Mme MOREL

Soit une fonction f définie sur un ensemble D sauf en x_0 . On note \mathcal{C} la représentation graphique de f. Intuitivement, une branche infinie de \mathcal{C} est une portion de la courbe de f de "longueur" infinie. On parle donc de branche infinie dès que l'une au moins des coordonnées x ou y = f(x) tend vers l'infini. L'étude des branches infinies est indispensable à l'étude d'une fonction.

1 Étude en un point: $x_0 \in \mathbb{R}$

Deux cas possibles: cette limite est soit finie, soit infinie.

- * Si la limite de f en x_0 est finie: la fonction est alors prolongeable par continuité en x_0 .
- * Si la limite de f en x_0 est infinie:

Exemple 1 : Donner $\lim_{x\to 0^+} \ln x$ et tracer la courbe représentative de la fonction logarithme.

Donner $\lim_{x\to 1^+} \frac{1}{x-1}$ et $\lim_{x\to 1^-} \frac{1}{x-1}$, et tracer, dans le même repère, la courbe représentative de cette fonction et la droite d'équation x=1.

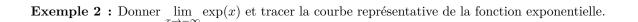
Si en un point x_0 , f admet une limite (éventuellement à gauche ou à droite) infinie, on dit que C admet une **asymptote verticale** d'équation $x = x_0$.

2 Limite en l'infini: $x_0 \in \{-\infty, +\infty\}$

2.1 Étape 1: Calculer $\lim_{m} f$

Encore deux cas possibles: cette limite est soit finie, soit infinie.

* Si cette limite est réelle:



Donner $\lim_{x\to +\infty} 2 - \frac{1}{x}$ et $\lim_{x\to -\infty} 2 - \frac{1}{x}$, et tracer, dans le même repère, la courbe représentative de cette fonction et la droite d'équation y=2.

Si en l'infini, f admet une limite finie l, on dit que \mathcal{C} admet une asymptote horizontale d'équation y = l.

- * Si cette limite est infinie: il faut poursuivre l'étude pour préciser le type de branche infinie.
- Étape 2: $\lim_{\infty} f = \infty \to \text{calculer } \lim_{\infty} \frac{f(x)}{x}$

On va distinguer trois cas, suivant que $\lim_{\infty} \frac{f(x)}{x}$ est infinie, nulle ou non nulle: * Si $\lim_{\infty} \frac{f(x)}{x} = \infty$: on dit que $\boxed{\mathcal{C}}$ admet une branche parabolique de direction (O_y) $\boxed{Exemples:}$ Fonctions carrée en $\pm \infty$, exponentielle en $+\infty$.

* Si $\lim_{\infty} \frac{f(x)}{x} = 0$: on dit que \mathcal{C} admet une branche parabolique de direction (O_x) Exemples: Fonctions racine en $+\infty$, logarithme en $+\infty$.

* Si $\lim_{\infty} \frac{f(x)}{x} = a$, avec $a \neq 0$: on dit que C admet une direction asymptotique d'équation y = ax. Il reste encore à en préciser le type.

2.3 Étape 3:
$$\lim_{\infty} f = \infty \to \lim_{\infty} \frac{f(x)}{x} = a \ (a \neq 0) \to \text{calculer } \lim_{\infty} (f(x) - ax)$$

Deux cas à envisager: cette limite est soit infinie, soit finie.

* Si
$$\lim_{\infty} (f(x) - ax) = \infty$$
:

Exemple 3 Considérons la fonction $f(x) = \ln x + \frac{x}{2}$. Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$, puis $\lim_{x \to +\infty} f(x) - \frac{x}{2}$.

Courbe représentative de f et droite d'équation $y = \frac{x}{2}$ dans un même repère:

Si en l'infini, f(x) - ax admet une limite infinie, on dit que C admet une **branche parabolique** de direction la droite d'équation y = ax.

* Si
$$\lim_{\infty} (f(x) - ax) = b$$
:

Exemple 4 On considère la fonction $f(x) = 2x + 1 + \frac{1}{x}$. Calculer les limites: $\lim_{x \to \infty} \frac{f(x)}{x}$ et $\lim_{x \to \infty} f(x) - 2x$. Courbe représentative de f et droite d'équation y = 2x + 1 dans un même repère:

Si en l'infini, f(x) - ax admet une limite finie b ($\lim_{x \to \infty} f(x) - (ax + b) = 0$), on dit que \mathcal{C} admet une **asymptote oblique** d'équation y = ax + b.

Remarque 1 : Etude de la position de $\mathcal C$ par rapport à son asymptote.

Cela revient à étudier le signe de f(x) - (ax + b) au voisinage de l'infini:

- * Si f(x) (ax + b) > 0, alors \mathcal{C} est au dessus de son asymptote.
- * Si f(x) (ax + b) < 0, alors \mathcal{C} est en dessous de son asymptote.