Fonctions réelles de deux variables

I. Calcul de dérivées partielles.

Exercice 1 Calculer, quand elles existent, les dérivées partielles des fonctions:

$$a(x,y) = \frac{x}{y} + \frac{y}{x} \qquad b(x,y) = x^2 y \cos(2x+y) \qquad c(x,y) = \sqrt{y-\frac{1}{2}} \ln(1-x^2-y^2)$$
$$f(x,y) = x^2 y^2 \arctan\left(\frac{x-y}{x+y}\right) \qquad g(x,y) = x^{(y^x)} \qquad h(x,y) = ye^{-(x^2+y)}.$$

Exercice 2 Soit V une application de classe \mathcal{C}^1 sur \mathbb{R}^2 . Calculer la dérivée de la fonction Φ définie sur \mathbb{R}^*_+ par:

$$\forall t \in \mathbb{R}, \ \Phi(t) = V\left(t^2 + 1, e^t + \ln t - 1\right).$$

II. Recherche d'extremum.

Exercice 3 On considère la fonction $f(x,y) = x^2 + xy + y^2$.

- 1. Calculer les dérivées partielles de f.
- 2. Montrer qu'il existe un unique couple (x_0, y_0) de \mathbb{R}^2 tel que

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0.$$

- 3. Étudier le signe du trinôme $X^2 + X + 1$.
- 4. En remarquant que $x^2 + xy + y^2 = y^2 \left((\frac{x}{y})^2 + \frac{x}{y} + 1 \right)$ quand $y \neq 0$, montrer que $f(x,y) \geq f(x_0,y_0), \forall (x,y) \in \mathbb{R}^2$. Interpréter ce résultat.

Exercice 4 On pose $f(x,y) = 4x^2 - 2xy + 7y^2 + 4$.

- 1. Déterminer les dérivées partielles de f.
- 2. Montrer que f admet un unique point critique (x_0, y_0) de \mathbb{R}^2 que l'on déterminera.
- 3. Étudier le signe du trinôme $4X^2 2X + 7$.
- 4. En déduire que (x_0, y_0) est un minimum de f.

Exercice 5 Montrer que la fonction $f:(x,y)\mapsto e^{x+y}-x^2-y$ admet un unique point critique sur \mathbb{R}^2 .

Exercice 6 Soit T l'ensemble des couples (x,y) de réels solutions du système d'inéquations $x\geqslant \frac{1}{4},\ y\geqslant \frac{1}{4},\ x+y\leqslant \frac{3}{4}.$ On note T' l'intérieur de T, à savoir les couples (x,y) de réels solutions du système d'inéquations $x>\frac{1}{4},\ y>\frac{1}{4},\ x+y<\frac{3}{4}.$ Soit f la fonction définie sur T par: $f(x,y)=\frac{1}{x}+\frac{1}{y}-\frac{2}{x+y}.$

- 1. Représenter sur un même graphique T et T'.
- 2. Déterminer les dérivées partielles d'ordre 1 sur T' de f.
- 3. Montrer que f n'a pas de point critique sur T'.

Exercice 7

$$\begin{array}{ccc} f: \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ x & \mapsto & x^2 - 2xy + 2y^2 + e^{-x} \end{array}$$

Établir que l'équation $e^{-x} = x$ admet une solution et une seule sur \mathbb{R} .

Montrer qu'il existe un unique point critique (x_0, y_0) , et établir:

$$\begin{cases} x_0 - e^{-x_0} = 0 \\ y_0 = \frac{x_0}{2} \end{cases}$$

Calculer les dérivées partielles d'ordre 2 de f en (x_0, y_0) .

Exercice 8:

1. On considère l'application φ définie sur $]0, +\infty[$ par :

$$\varphi(x) = 2\ln\left(\frac{x}{2}\right) + \frac{1}{x}$$

- (a) Dresser le tableau de variations de φ sur $]0, +\infty[$.
- (b) On rappelle que $\ln 2 \simeq 0,69$. Montrer qu'il existe deux réels α et β , et deux seulement, tels que :

$$\varphi(\alpha) = 0 = \varphi(\beta)$$
 et $0 < \alpha < \frac{1}{2} < \beta$

2. On considère la fonction f définie sur $]0, +\infty[\times]0, +\infty[$ par :

$$f(x,y) = e^{x+4y} \ln(xy)$$

(a) Prouver que pour tout x et y strictement positifs,

$$\frac{\partial f}{\partial x}(x,y) = f(x,y) + \frac{1}{x} \operatorname{e}^{x+4y} \ \text{ et } \ \frac{\partial f}{\partial y}(x,y) = 4 \, f(x,y) + \frac{1}{y} \operatorname{e}^{x+4y}$$

(b) Montrer que les points de coordonnées $\left(\alpha, \frac{\alpha}{4}\right)$ et $\left(\beta, \frac{\beta}{4}\right)$ sont les seuls points critiques de f sur $]0, +\infty[\times]0, +\infty[$.

Exercice 9 Soit f la fonction de deux variables définie sur $U =]1, +\infty[\times]0, \frac{1}{2}[$ par:

$$f(x,y) = x y (1 - 2y)^{x-1}.$$

- 1. Montrer que f admet en tout point de U des dérivées partielles premières. Les calculer et les factoriser.
- 2. Montrer que $\forall u \in]0,1[$, $\ln(1-u) < -u$. En déduire que f n'a pas de point critique sur U.