Intégration sur un segment

BCPST 1C - Mme MOREL

1 Intégrale d'une fonction continue sur un segment

1.1 Rappels

Définition 1 Soit f une fonction continue sur un intervalle I. On dit que F est une primitive de f sur I si F est dérivable sur I et F' = f.

Théorème 1 (théorème d'existence), admis: Toute fonction continue sur un intervalle I admet au moins une primitive sur I.

Proposition 1 Soit f une fonction continue sur un intervalle I. f admet une infinité de primitives sur I; deux primitives diffèrent à une constante près.

En d'autres termes: soit F une primitive de f sur I (théorème d'existence). Alors l'ensemble des primitives de f sur I est de la forme: $\{F + \lambda, \lambda \in \mathbb{R}\}$.

Proposition 2 Soient f et g deux fonctions continues sur un intervalle I, admettant respectivement F et G comme primitive sur I. Alors F+G est une primitive de f+g sur I et $\forall \lambda \in \mathbb{R}$, λF est une primitive de λf sur I.

 $\textbf{\textit{D\'efinition 2} Soient f une fonction continue sur un intervalle I, a,b \in I. Soit \underline{F une primitive (quelconque) de f sur I.}$

On appelle intégrale de f de a à b le nombre réel F(b) - F(a) que l'on note: $F(b) - F(a) = \int_a^b f(t) dt$

Dans les calculs, la différence F(b) - F(a) est notée $[F(t)]_a^b$.

Remarque 1 : Cette définition a bien un sens: l'intégrale ne dépend pas du choix de la primitive:

Proposition 3 (linéarité): Soient f et g deux fonctions continues sur un intervalle I, $a, b \in I$, et $\lambda \in \mathbb{R}$. Alors: $\int_{-b}^{b} (f+g) = \int_{-a}^{b} f + \int_{-a}^{b} g \ \text{et} \int_{-a}^{b} (\lambda f) = \lambda \int_{-a}^{b} f.$

Remarque 2 Propriété équivalente à :
$$\forall \lambda, \, \mu \in \mathbb{R}, \, \int_a^b (\lambda \, f + \mu \, g) = \lambda \, \int_a^b f + \mu \, \int_a^b g$$

Proposition 4 (relation de Chasles): Soit f une fonction continue sur un intervalle I. Pour tous $a,b,c \in I$:

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

1.2 Nouvelles propriétés de l'intégrale

Proposition 5 Soient f, g deux fonctions continues sur un intervalle I, soient $a, b \in I$ tels que a < b

(1)
$$f \geqslant 0$$
 sur $[a,b] \Rightarrow \int_a^b f \geqslant 0$. (positivité)

(2)
$$f \geqslant g \ sur \ [a,b] \Rightarrow \int_a^b f \geqslant \int_a^b g. \ (croissance)$$

(3)
$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f| \leqslant \max_{[a,b]} |f| \times (b-a)$$

Remarque 3:

(1) L'ordre des bornes est FONDAMENTAL!!!!

Il faut penser à remettre les bornes dans le bon sens par la formule: $\int_a^b f = -\int_b^a f$. En effet:

Si $f \geqslant 0$ et a > b alors $\int_b^a f \geqslant 0$, et puisque $\int_a^b f = -\int_b^a f$, $\int_a^b f \leqslant 0$

(2) Si $f \le 0$ et a < b, on a aussi: $\int_a^b f \le 0$. (3) ATTENTION! Les réciproques de (1) et (2) sont fausses... $contre-exemple: \int_{-1}^2 t \, dt = \left[\frac{t^2}{2}\right]_{-1}^2 = \frac{4}{2} - \frac{1}{2} = \frac{3}{2} \ge 0, \text{ et pour tant } t \mapsto t \text{ change de signe sur } [-1,2]...$

Preuve:

Exemple 1 (encadrements d'intégrales):

Soit f continue sur [a,b] telle que: il existe $m,M\in\mathbb{R}$ tels que $m\leqslant f\leqslant M$ sur [a,b]. Alors:

$$m \leqslant \frac{1}{b-a} \int_a^b f \leqslant M$$
 (inégalité de la moyenne)

En d'autres termes: la valeur moyenne $\frac{1}{b-a}\int_a^b f$ appartient à l'ensemble des valeurs atteintes par la fonction. Preuve:

Exemple 2 : Suites d'intégrales (ou calcul de limite par encadrement)

(1)
$$\forall n \in \mathbb{N}, I_n = \int_0^1 \frac{x^n}{1+x} dx$$
. Encadrement de I_n :

POINT MÉTHODE 1: il suffit d'encadrer $(x \mapsto \frac{x^n}{1+x}) \left[\sup [0,1] \right]$ (attention à l'ordre des bornes!!) * Mauvais encadrement (ou encadrement trop grossier qui ne donne pas la limite) $\forall x \in [0,1], \ x^n \in [0,1], \ \text{et puisque} \ \frac{1}{1+x} > 0, \ 0 \leqslant \frac{x^n}{1+x} \leqslant \frac{1}{1+x} \leqslant 1.$

$$\forall x \in [0,1], x^n \in [0,1], \text{ et puisque } \frac{1}{1+x} > 0, 0 \leqslant \frac{x^n}{1+x} \leqslant \frac{1}{1+x} \leqslant 1.$$

Donc en intégrant (0 < 1):

* Bon encadrement (qui donne la limite):

(2)
$$\forall n \in \mathbb{N}, I_n = \int_0^1 (1-t)^n e^t dt.$$

Proposition 6 Soit f une fonction continue et positive sur [a,b], où a < b $f(t) = 0 \,\forall t \in [a, b] \, ssi \, \int_a^b f = 0.$

Remarque 4: Encore valable si $f \leq 0$ sur [a, b].

Preuve: \Longrightarrow C'est clair. \Longleftrightarrow On a $\int_a^b f = F(b) - F(a) = 0$.

Remarque 5 : Interprétation géométrique des propriétés de l'intégrale Soit f une fonction continue sur [a, b]

- (1) $f \geqslant 0 \Rightarrow \int_a^b f = \mathcal{A}(D) \geqslant 0$ et $f \leqslant 0 \Rightarrow \int_a^b f = -\mathcal{A}(D) \leqslant 0$: c'est la POSITIVITÉ de l'intégrale
- (2) Pour $c_1 \in [a, b]$, $\int_a^b f = \int_a^{c_1} f + \int_{c_1}^b f$: c'est la RELATION DE CHASLES

$$\underbrace{-\mathcal{A}(D_1) - \mathcal{A}(D_2)}_{-\int_a^b |f|} \leqslant \int_a^b f = \mathcal{A}(D_1) - \mathcal{A}(D_2) \leqslant \underbrace{\mathcal{A}(D_1) + \mathcal{A}(D_2)}_{\int_a^b |f|},$$

donc c'est la propriété: $\left| \int_a^b f \right| \le \int_a^b |f|$

$$\underbrace{m(b-a)}_{\text{re du rectangle vert}} \leqslant \int_a^b f = \mathcal{A}(D_1) - \mathcal{A}(D_2) \leqslant \underbrace{M(b-a)}_{\text{aire du rectangle rouge}}.$$

C'est l'INÉGALITÉ DE LA MOYENNE

(5)

$$\left| \int_a^b f \right| \leqslant \int_a^b |f| \leqslant \max_{\underline{[a,b]}} |f|$$
 aire du rectangle .

1.3 Calcul intégral vu au premier semestre

Recherche d'une primitive, formule d'intégration par parties, changement de variable :

Théorème 2 Soient u et v deux fonctions de classe C^1 sur un intervalle I. Pour tous $a, b \in I$:

$$\int_{a}^{b} u'(t) v(t) dt = [u(t) v(t)]_{a}^{b} - \int_{a}^{b} u(t) v'(t) dt$$

Théorème 3 Soient f continue sur un intervalle I et $\alpha, \beta \in I$. Soit u de classe C^1 sur $[\alpha, \beta]$ telle que $u([\alpha, \beta]) \subset I$. Alors:

$$\int_{\alpha}^{\beta} f(u(t)) u'(t) dt = \int_{u(\alpha)}^{u(\beta)} f(x) dx$$

On dit qu'on a effectué le changement de variable C^1 x=u(t)

Remarque 6 : Mise en oeuvre du changement de variable \mathcal{C}^1 x=u(t):

Trois choses à changer:

- * Les bornes,
- * La variable,
- * La différentielle. "à la physicienne"

2 Fonction intégrale de ses bornes

Proposition 7 Soit f une fonction continue sur un intervalle I et $a \in I$ Alors la fonction $F: x \mapsto \int_a^x f(t) dt$ est de classe C^1 sur I et F' = f.

Remarque 7 ATTENTION AUX ERREURS CLASSIQUES:

- (1) f continue sur I et non dérivable!
- (2) $F'(x) = f(x) \ \forall x \in I$, et non F'(x) = f'(x)!
- (3) Cohérence des notations: F'(x) = f(t) ne veut rien dire... Pire: $\int_a^x f(x) dx$ ne sera pas toléré dans une copie...

Remarque 8 On a $F(a) = \int_a^a f(t) dt$, donc F(a) = 0 et F' = f.

Conclusion: F est l'unique primitive de f qui s'annule en a

exemple: $\forall x > 0$, $\ln x = \int_{1}^{x} \frac{1}{t} dt$.

Preuve:

Remarque 9 ATTENTION

(1) Si f est continue sur I, toutes les primitives de f sur I ne s'expriment pas sous la forme $\int_a^x f(t) dt$ (seulement quelques unes...)

contre-exemple: Les primitives de la fonction exponentielle sur $\mathbb R$ sont de la forme $\exp +C,\,C\in\mathbb R.$

Si il existe $a \in \mathbb{R}$ tel que: $\forall x \in \mathbb{R}, e^x = \int_a^x e^t dt$, alors $e^x = [e^t]_a^x = e^x - e^a$ et donc $e^a = 0!!!$

(2) Dire que $x \mapsto \int_{1}^{x} \frac{1}{1+t} dt$ est \mathcal{C}^{1} sur $\mathbb{R} \setminus \{-1\}$ est FAUX!

En effet, $1 \notin]-\infty, -1[...$ Donc cette fonction est \mathcal{C}^1 sur $]-1, +\infty[$ seulement...!

Exemple 3 Etude de la fonction F donnée par: $F(x) = \int_1^x \ln t \, dt$. (SANS CALCULER L'INTÉGRALE)

(En calculant l'intégrale: connaissez-vous une primitive de ln sur $]0, +\infty[?]$

Corollaire 1 Soit f une fonction continue sur [a,b], et u,v deux fonctions dérivables sur un intervalle I et à valeurs dans [a,b].

Alors la fonction $\phi: I \to \int_{u(x)}^{v(x)} f(t) dt$ est dérivable sur I et $\phi'(x) = f(v(x)) v'(x) - f(u(x)) u'(x)$.

Preuve (à savoir refaire):

Exemple 4

(1)
$$F(x) = \int_0^{2x} e^{-t} dt$$
.

(2)
$$F(x) = \int_{0}^{x^2} e^{-t^2} dt$$
.

Annexe:

Proposition 8 Soit f une fonction continue, croissante et positive sur [a,b]. Alors f admet une primitive sur [a,b] et $\int_a^b f$ est l'aire du domaine délimité par les droites x=a, x=b, y=0 et la courbe représentative C_f de f.

Preuve: On note A la fonction définie sur [a,b] par: $\forall x_0 \in [a,b]$, $A(x_0) = \mathcal{A}(D)$, où D est le domaine délimité par les droites $x = a, x = x_0, y = 0$ et \mathcal{C}_f .

Montrons que A est une primitive de f sur [a, b]:

* $\forall x_0 \in [a, b[: \text{soit } h > 0 \text{ tel que } x_0 + h \in [a, b].$

 $A(x_0 + h) - A(x_0) = A(D_h)$, où D_h est le domaine délimité par les droites $x = x_0$, $x = x_0 + h$, y = 0 et C_f .

Or f est croissante sur [a,b] donc $\forall x \in [x_0,x_0+h], f(x_0) \leqslant f(x) \leqslant f(x_0+h),$ donc $\Delta_{inf} \subset D_h \subset \Delta_{sup}$, où Δ_{sup} est le rectangle de hauteur $f(x_0+h)$ et de largeur $x_0+h-x_0=h$, et Δ_{inf} est le rectangle de hauteur $f(x_0)$ et de largeur $x_0+h-x_0=h$. Donc:

$$f(x_0) h \leqslant A(x_0 + h) - A(x_0) \leqslant f(x_0 + h) h \underset{h>0}{\Rightarrow} f(x_0) \leqslant \frac{A(x_0 + h) - A(x_0)}{h} \leqslant f(x_0 + h).$$

On passe à la limite $h \to 0^+$: f étant continue sur [a,b] et donc en x_0 , $\lim_{h \to 0^+} f(x_0 + h) = f(x_0)$, donc par encadrement:

$$\lim_{h \to 0^+} \frac{A(x_0 + h) - A(x_0)}{h} = f(x_0).$$

Conclusion: A est dérivable à droite en x_0 et $A'_d(x_0) = f(x_0)$

* $\forall x_0 \in]a, b]$: soit h > 0 tel que $x_0 - h \in [\overline{a, b}]$.

De même, on montre que A est dérivable à gauche en x_0 et $A_g'(x_0) = f(x_0)$

Conclusion: $\forall x_0 \in]a, b[$, A est dérivable à droite et à gauche $\overline{\text{en } x_0, \text{ et } A'_d(x_0)} = f(x_0) = A'_g(x_0), \text{ donc } A$ est dérivable en x_0 et $A'(x_0) = f(x_0)$.

De plus, on a aussi: $A'_d(a) = f(a)$ et $A'_q(b) = f(b)$, donc A est dérivable sur [a,b] et A' = f

De plus, A(a) = 0 donc A est l'unique primitive de f qui s'annule en a donc on a: $\forall x \in [a, b], A(x) = \int_{a}^{x} f(t) dt$, et donc

$$A(b) = \int_{a}^{b} f(t) dt$$

Proposition 9 Si f est continue et positive sur [a, b], la proposition précédente est encore vraie: A est une primitive de f sur[a,b] et $A(b) = \int_a^b f(t) dt$.

Preuve:

* $\forall x_0 \in [a, b[: \text{soit } h > 0 \text{ tel que } x_0 + h \in [a, b].$

f est continue sur le segment $[x_0, x_0 + h]$ donc f est bornée et atteint ses bornes: il existe $c_h \in [x_0, x_0 + h]$ et $d_h \in [x_0, x_0 + h]$ tels que:

$$f(c_h) = \min_{[x_0, x_0 + h]} f \text{ et } f(d_h) = \max_{[x_0, x_0 + h]} f.$$

Donc $h f(c_h) \leq A(x_0 + h) - A(x_0) \leq h f(d_h)$ et $(h > 0) f(c_h) \leq \frac{A(x_0 + h) - A(x_0)}{h} \leq f(d_h)$. On passe à la limite $(h \to 0^+)$: par encadrement, $\lim_{h \to 0^+} c_h = x_0$, donc $(f \text{ étant continue en } x_0) \lim_{h \to 0^+} f(c_h) = f(x_0)$. De

même, $\lim_{h\to 0^+} f(d_h) = f(x_0)$, donc par encadrement, $\lim_{h\to 0^+} \frac{A(x_0+h)-A(x_0)}{h} = f(x_0)$.

Donc A est dérivable à droite en x_0 et $A'_d(x_0) = f(x_0)$

* De la même façon, A est dérivable à gauche en x_0 et $A'_a(x_0) = f(x_0)$.

Et on conclut comme dans la preuve précédente.