TP Chimie 01 BCPST 1C

Dosage par étalonnage de l'eau de Dakin - CORRIGE

Le permanganate de potassium est constitué d'ions K[†] et d'ions MnO₄. **31-**Sa formule est donc KMnO₄ et sa masse molaire vaut :

$$M(KMnO_4) = M(K) + M(Mn) + 4 M(O),$$

soit $M(KMnO_4) = 158 \text{ g.mol}^{-1}$.

D'après l'étiquette, la concentration massique en permanganate de potassium dans la **2**solution de Dakin vaut $C_m(KMnO_4) = 0.0100 \text{ g.L}^{-1}$ ce qu'on peut interpréter en disant qu'il y a une masse m(KMnO₄) = 0,0100 g de permanganate de potassium dans un volume V = 1,00 L de solution de Dakin.

Or, par définition:

$$C_{Th} = \frac{n(KMnO_4)}{V(Solution)}$$

$$C(KMnO_4) = \frac{m(KMnO_4)}{M(KMnO_4) \times V(Solution)}$$

$$AN \rightarrow C_{Th} = 0.0100 / (158 \times 1.00)$$

3-3-Une solution de permanganate de potassium est magenta/violette/rose ... La longueur d'onde que cette solution absorbera le plus correspondra donc à la couleur complémentaire associée au magenta/violet/rose, ce qui correspond à du vert de longueur d'onde dans le vide ou dans l'air : $\lambda = 530$ nm.

Le spectre UV du permanganate de potassium doit donc présenter un pic d'absorbance pour cette longueur d'onde, ce qui correspond au spectre de gauche.

- Pour des questions de précision, on réalise toujours l'étude à la longueur d'onde la plus **29.4**absorbée par l'espèce chimique. On choisira donc $\frac{\lambda = 530 \text{ nm}}{}$.
- On va tout d'abord réaliser différentes solutions filles de permanganate de ≥5potassium dont les concentrations molaires seront réparties autour de la concentration théorique dans l'eau de Dakin. On va les répartir entre 1.10 -5 mol.L -1 et 8.10 -5 mol.L -1.

On mesure alors l'absorbance de ces différentes solutions filles pour la longueur d'onde $\lambda = 530$ nm. On reporte les valeurs de concentration et d'absorbance des différentes solutions filles sur le graphique A = f(C).

On mesure l'absorbance de la solution de Dakin pour la même longueur d'onde que précédemment puis on exploite la loi de Beer-Lambert pour remonter à la concentration molaire en permanganate de potassium dans l'eau de Dakin.

≥6 -	Solution fille S ₁	Solution fille S ₂	Solution fille S ₃	Solution fille S ₄
Valeur de concentration molaire (en mol.L - 1)	$C_1 = 1,0.10^{-5}$	$C_2 = 2,5.10^{-5}$	$C_3 = 5,0.10^{-5}$	$C_4 = 8,0.10^{-5}$
Volume V _{FILLE} de solution fille à préparer	$V_1 = 100 \text{ mL}$	$V_2 = 100 \text{ mL}$	$V_3 = 50 \text{ mL}$	$V_4 = 50 \text{ mL}$
Volume V _{MERE} de solution mère à diluer	10 mL*	25 mL*	25 mL*	40 mL*
Matériel à utiliser pour	<u>Prélever V_{MERE}</u> : Pipette jaugée <u>Contenir V_{FILLE}</u> : Fiole jaugée			

* Pour déterminer la valeur de V_{MERE} , on applique la formule : $V_{MERE} = \frac{C_{FILLE}}{C_{2}} \times V_{FILLE}$

$$V_{\text{MERE}} = \frac{C_{\text{FILLE}}}{C_0} \times V_{\text{FILLE}}$$

≽7-Les mesures d'absorbance donnent les résultats ci-dessous :

- # Solution fille à $C_1 = 1,00.10^{-5}$ mol/L ; Absorbance $A_1 = 0,0241$
- # Solution fille à $C_2 = 2,50.10^{-5}$ mol/L; Absorbance $A_2 = 0,0599$

```
\# Solution fille à C_3=5,00.10^{\text{-}5} mol/L ; Absorbance A_3=0,1192 \# Solution fille à C_4=8,00.10^{\text{-}5} mol/L ; Absorbance A_4=0,1903 \# Solution fille à C_5=10,0.10^{\text{-}5} mol/L ; Absorbance A_5=0,2364
# Importation des bibliothèques utiles
import numpy as np
                                                    # Pour faire des calculs, des tableaux
import matplotlib.pyplot as plt
                                                    # Pour tracer des graphiques
from math import sqrt
                                                   # Importe la fonction « racine carrée »
# Tableau des différentes valeurs de concentrations C et d'absorbance A
C = np.array([0.00001, 0.000025, 0.00005, 0.00008, 0.0001])
                                                   # Tableau des différentes valeurs de concentrations (en mol/L)
A = np.array([0.0241, 0.0599, 0.1192, 0.1903, 0.2364])
                                                    # Tableau des différentes absorbances associées (sans unité)
# Tracé du graphique A = f(C)
plt.plot(C,A,'b+')
                                                    # Choix des axes du graphique et du style de points (croix bleues)
plt.xlabel('C (en mol/L)')
                                                   # Titre de l'axe des abscisses
plt.ylabel('A (sans unité)')
                                                   # Titre de l'axe des ordonnées
plt.title('Absorbance de solutions de KMnO<sub>4</sub> en fonction de leur concentration')
                                                                                                          # Titre du graphique
```

Commande pour afficher le graphique

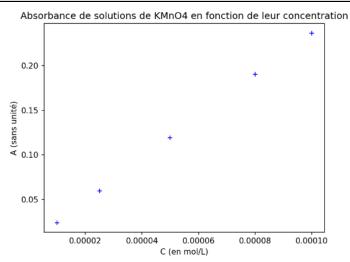
■8- Le report de ces points sur le graphique :

= f(C) donne une fonction linéaire, attes-tar de la proportionnalité qui existe entr absorbance et concentration molaire pour d faibles concentrations molaires : la loi de Beel Lambert est donc vérifiée.

plt.show()

9- La loi de Beer-Lambert s'écrivant d $\stackrel{\sim}{<}$ 0.10 façon simplifiée : A = k x C, on a $\boxed{\mathbf{k} = \mathbf{A} / \mathbf{C}}$.

La loi de Beer-Lambert étant vérifiée, o peut demander au programme Python d réaliser ce calcul pour les 5 solutions étudiées l'aide du programme ci-dessous :



№ 10- On obtient le tableau de valeurs suivant :

 $k = [2400, 2400, 2380, 2375, 2370] L.mol^{-1}$

11- On remplit le programme ci-dessous :

```
# Calcul de la valeur moyenne, de l'écart-type et de l'incertitude-type de k

k_moy = np.mean (k)  # Formule pour calculer la valeur moyenne des différentes valeurs de k

ecart_k = np.std(k, ddof = 1)  # Formule pour calculer l'écart-type des différentes valeurs de k

u_k = ecart_k/np.sqrt(5)  # Formule pour calculer l'incertitude-type sur la moyenne de k

# Affichage de la valeur moyenne et de l'incertitude-type de k

print('Valeur moyenne de k (en L/mol) = ', k_moy)  # Affiche la valeur moyenne de k

print('Incertitude type sur k (en L/mol) = ', u_k)  # Affiche l'incertitude de répétabilité sur k
```

Le programme annonce :

- Valeur moyenne de k (en L/mol) = 2385.0
- Incertitude type sur k (en L/mol) = 6.324555320336812

On peut donc écrire : $k = (2385,0 + /-6,4) L.mol^{-1}$

Dans les mêmes conditions que précédemment, l'absorbance de l'eau de Dakin vaut ADAkin = 0,1461.

Or, la précision du spectrophotomètre UV vaut <u>2 % de la valeur affichée + 5 digits</u>, on en déduit que l'incertitude **u**(A_{Dakin}) sur la valeur de l'absorbance mesurée vaut :

$$u(A_{Dakin}) = \frac{0,02 \times 0,1461 + 5 \times 0,0001}{\sqrt{3}}$$

soit $u(A_{Dakin}) = 0,001976$ qu'on peut arrondir à $u(A_{Dakin}) = 0,0020$ en regard du rang de l'information apportée par l'affichage numérique du spectrophotomètre.

Donc on peut dire que ADakin_ = 0,1461 +/- 0,0020.

$$^{\Sigma}$$
 On en déduit donc $C_{Dakin} = A_{Dakin} / k$, soit $C_{Dakin} = 0,1461 / 2385$, ce qui conduit à :
$$\frac{C_{Dakin} = 6,126.10^{-5} \text{ mol.L}^{-1}}{2000}$$
.

≥ 14- Comme C_{Dakin} a été obtenue en appliquant la formule C_{Dakin} = A_{Dakin} / k, on a la relation :

$$u(C_{Dakin}) = C_{Dakin} \times \sqrt{\left(\frac{u(A_{Dakin})}{A_{Dakin}}\right)^2 + \left(\frac{u(k)}{k}\right)^2}$$

$$u(C_{Dakin}) = 6,126.10^{-5} \times \sqrt{\left(\frac{0,0020}{0,1461}\right)^2 + \left(\frac{6,4}{2385}\right)^2}$$

Soit $\underline{u(C_{Dakin})} = 0.0839.10^{-5} \text{ mol.L}^{-1}$ et donc $\underline{C_{Dakin}} = (6.126 + /-0.084).10^{-5} \text{ mol.L}^{-1}$

 $^{-}$ L'écart normalisé entre $\underline{C_{Dakin}} = (6,126 + /-0,084).10^{-5} \text{ mol.L}^{-1}$ est donné par la formule :

$$EN = \frac{|C_{Dakin} - C(KMnO_4)|}{u(C_{Dakin})}$$

$$AN \rightarrow EN = \frac{\left|6, 126. 10^{-5} - 6, 33. 10^{-5}\right|}{0,084. 10^{-5}}$$

On obtient ici un écart normalisé égal à 2,4, supérieur à 2. La concentration expérimentale et la concentration théorique ont donc des valeurs incompatibles.

Cet écart peut être lié aux <u>incertitudes sur la préparation des différentes solutions</u> <u>filles que nous avons négligées</u> ...